
ESCUELA SUPERIOR DE INGENIERÍA INFORMÁTICA

INGENIERÍA INFORMÁTICA

Curso académico 2008-2009

Proyecto de Fin de Carrera

Development and integration of an awareness
applications manager into ASTRA

Autor: David Rozas Domingo

Tutoras: Soto Montalvo (URJC)

Monica Divitini (NTNU)

Copyright c© 2009 David Rozas Domingo. Permission is granted to copy,

distribute and/or modify this document under the terms of the GNU Free

Documentation License, Version 1.3 or any later version published by the

Free Software Foundation; with no Invariant Sections, no Front-Cover

Texts, and no Back-Cover Texts. A copy of the license is included in

Section E.

A mis padres.

Gracias por educarme para ser la persona

que soy, con mis defectos y mis virtudes,

con mis aciertos y mis errores. Os quiero.

4

Acknowledgments

I would like to thank Professors Soto Montalvo and Monica Divitini for giving me

the opportunity of making this project possible. I wish to thank also all the people

from NTNU, CTI and Telenor involved in ASTRA; specially Alfredo, a fantastic

computer scientist but even better friend.

5

Abstract

ASTRA (Awareness Services and Systems - Towards Theory and Realization)

is a project that researches awareness systems and services that are used for social

purposes through the creation of awareness applications. The project discussed in

this document is part of the work developed for ASTRA, and it aims the creation and

integration of a system to manage the mentioned awareness applications, including

functionalities for sharing, tagging, locating, appropriating and adapting them, taking

into account the concerns about privacy in terms of visibility for all the involved

elements (applications, tags, etc.).

The backbone of ASTRA is “ASTRA SOA” (Service Oriented Architecture), the

platform where all the necessary services are offered. It is made up of a group of

OSGi bundles which are divided into two subsystems from a high level point of view:

ASTRA Node and ASTRA Backend, following a Client-Server model. This document

details the process carried on to develop a new set of bundles for both subsystems,

which offer the previously mentioned functionalities. It also includes an analysis of

an users study evaluation performed at NTNU (Trondheim, Norway) in December

2008 with a preliminary version, and the guidelines to perform a new users study

scheduled in October 2009, with emphasis on the searching capabilities evaluation.

6

Resumen

ASTRA (Awareness Services and Systems - Towards Theory and Realization) es

un proyecto que investiga sistemas y servicios “awareness” empleados para propósitos

sociales a través de la creación de aplicaciones “awareness”. El proyecto que se de-

talla en este documento se enmarca dentro del trabajo desarrollado en ASTRA, y

tiene como objetivo la creación e integración de un sistema para gestionar dichas

aplicaciones, incluyendo funcionalidades para compartirlas, etiquetarlas, localizarlas,

recuperarlas y adaptarlas, haciendo hincapié en la privacidad en términos de visibi-

lidad de todos los elementos (aplicaciones, etiquetas, etc.).

La piedra angular de ASTRA es “ASTRA SOA” (Service Oriented Architecture),

la plataforma desde la que se ofrecen todos los servicios necesarios. Está compuesta

por un grupo de bundles OSGi que, a alto nivel, se dividen en dos subsistemas que

siguen un modelo Cliente-Servidor: ASTRA Node y ASTRA Backend. Este docu-

mento detalla el proceso llevado a cabo para desarrollar un conjunto de nuevos bundles

para ambos subsistemas, que ofrecen las funcionalidades previamente mencionadas.

Se incluye igualmente un análisis de un estudio de usuarios para la evaluación de una

versión preliminar llevado a cabo en la universidad NTNU (Trondheim, Noruega) en

diciembre de 2008, aśı como una serie de pautas para el próximo estudio de usua-

rios programado para Octubre de 2009, con especial hincapié en la evaluación de las

nuevas funcionalidades relativas a los procesos de búsqueda.

Contents

1 Introduction 14

1.1 What is ASTRA? . 14

1.2 ASTRA applications . 15

1.3 Motivations of the project . 16

2 Objectives 18

3 Methodology and involved technologies 20

3.1 Methodology . 20

3.2 Involved paradigms and technologies 22

3.2.1 SOA . 22

3.2.2 Java . 24

3.2.3 OSGi . 25

3.2.4 Swing . 27

3.2.5 XML . 29

3.2.6 DOM . 29

3.2.7 Lucene . 30

3.2.8 MySQL . 30

4 Description 32

4.1 Requirements . 32

4.2 Use cases . 34

4.2.1 Repository management . 34

4.2.2 Searching . 37

4.2.3 Tags management . 39

4.2.4 Other general functionalities 41

4.3 Design . 43

7

CONTENTS 8

4.3.1 Bundles design . 43

4.3.2 RepositoryManager . 44

4.3.3 TagManagerBackEnd . 52

4.3.4 TagManagerNode . 57

4.3.5 ApplicationManager . 60

4.4 Implementation . 67

4.4.1 Creating and deploying a bundle 67

4.4.2 Implementing MVC in a SWING application 70

4.4.3 Search engine development . 71

4.4.4 Application adaptation . 74

4.5 User interaction . 79

4.5.1 Tagging and sharing . 79

4.5.2 Locating an application in the repository 80

4.5.3 Retrieving and adapting an application from the repository . . 81

4.6 Testing . 84

4.6.1 Functionalities verification . 84

4.6.2 OS compatibility . 84

4.6.3 Search engine testing . 85

4.6.4 Users evaluation . 87

4.7 Coordination . 89

4.8 Tools . 90

5 Conclusions 91

5.1 Achieved goals . 91

5.2 Contribution . 91

5.3 Future work . 92

5.4 Personal evaluation . 93

A Document scoring in Lucene 94

B Search engine - Testing data 97

C Bundles manifests 100

C.1 RepositoryManager’s manifest . 100

C.2 TagManagerBackEnd’s manifest . 101

C.3 TagManagerNode’s manifest . 101

CONTENTS 9

C.4 ApplicationManager’s manifest . 102

D OSGi bundles configuration 103

D.1 OSGi - Backend configuration . 103

D.2 OSGi - Node configuration . 104

E GNU Free Documentation License 106

1. APPLICABILITY AND DEFINITIONS 107

2. VERBATIM COPYING . 109

3. COPYING IN QUANTITY . 109

4. MODIFICATIONS . 110

5. COMBINING DOCUMENTS . 112

6. COLLECTIONS OF DOCUMENTS . 113

7. AGGREGATION WITH INDEPENDENT WORKS 113

8. TRANSLATION . 113

9. TERMINATION . 114

10. FUTURE REVISIONS OF THIS LICENSE 114

11. RELICENSING . 115

List of Tables

3.1 Iterations during the project . 21

4.1 Functional requirements . 33

4.2 Non functional requirements . 33

4.3 Browse applications - general scenario description 35

4.4 Share application - general scenario description 35

4.5 Retrieve application - general scenario description 36

4.6 Search by criteria - general scenario description 37

4.7 Search by similarity - general scenario description 38

4.8 Add tag - general scenario description 40

4.9 Remove tag - general scenario description 40

4.10 Logging in - general scenario description 41

4.11 Logging out - general scenario description 42

4.12 Look up help - general scenario description 42

4.13 RepositoryManager interface . 46

4.14 RepositoryManager interface (II) . 47

4.15 RepositoryManager interface (III) . 48

4.16 RepositoryManager interface (IV) . 49

4.17 TagManagerBackEnd interface . 55

4.18 TagManagerBackEnd interface (II) 56

4.19 TagManagerNode interface . 59

4.20 Types of field storage options in Lucene 72

4.21 Types of field indexation in Lucene 72

4.22 Fields used by RepositoryManager’s search engine index 73

4.23 Matching affected fields in querying by criteria 73

4.24 Summary of the results for search by similarity evaluation 87

10

LIST OF TABLES 11

B.1 Search by similarity evaluation - raw data (sport) 97

B.2 Search by similarity evaluation - raw data (social) 97

B.3 Search by similarity evaluation - raw data (feelings) 98

B.4 Search by similarity evaluation - raw data (cultural) 98

B.5 Search by similarity evaluation - raw data (location) 98

B.6 Search by similarity evaluation - results for group “Sport” 98

B.7 Search by similarity evaluation - results for group “Social” 99

B.8 Search by similarity evaluation - results for group “Feelings” 99

B.9 Search by similarity evaluation - results for group “Cultural” 99

B.10 Search by similarity evaluation - results for group “Location” 99

List of Figures

1.1 ASTRA logo . 15

1.2 ASTRA applications example . 16

1.3 Sharing and retrieving applications through the repository 17

3.1 Spiral model (Boehm, 1988) . 21

3.2 OSGi layered model . 26

4.1 Repository management use cases . 34

4.2 Searching use cases . 37

4.3 Tagging use cases . 39

4.4 Other general functionalities . 41

4.5 Relationships between the bundles developed for this project (compo-

nents diagram) . 44

4.6 RepositoryManager (components diagram) 45

4.7 RepositoryManager (class diagram) 51

4.8 RepositoryManager (database model) 52

4.9 TagManagerBackEnd (components diagram) 54

4.10 TagManagerBackEnd (class diagram) 57

4.11 TagManagerNode (components diagram) 58

4.12 TagManagerNode (class diagram) . 60

4.13 ApplicationManager (components diagram) 62

4.14 Singleton design pattern . 63

4.15 ApplicationManager (class diagram) 65

4.16 RepositoryManager’s activator . 69

4.17 Bundles priorities configuration . 70

4.18 Querying the search engine by using the GUI 74

12

LIST OF FIGURES 13

4.19 Offering the alternative of adapting the application manually (screen-

shot) . 75

4.20 Application adaptation through the GUI (screenshot) 75

4.21 Changes in the internal ownership of the rule 77

4.22 Creating a rule description from an XML file 78

4.23 Interaction with “My applications” (screenshot) 79

4.24 Adding a tag (screenshot) . 80

4.25 Sharing an application (screenshot) 81

4.26 Browsing the repository (screenshot) 82

4.27 Searching an application by criteria (screenshot) 82

4.28 Searching an application by similarity (screenshot) 83

4.29 Retrieving and adapting an application from the repository (screenshot) 83

4.30 ApplicationManager running in GNU/Linux and Windows XP simul-

taneously . 85

Chapter 1

Introduction

1.1 What is ASTRA?

ASTRA (Awareness Services and Systems - Towards Theory and Realization) [CM07]

is a project (logo in Figure 1.1) that researches awareness systems and services that

are used for social purposes. Awareness systems are computer-mediated commu-

nication systems that help individuals or groups build and maintain a peripheral

awareness of each other, allowing them to stay in touch.

Compared to telephony and video conferencing, awareness systems offer low ef-

fort and non-intrusive communication throughout the day. The state of the art is

limited to non-functional prototypes without corresponding advances in theory de-

velopment. The assessment project aims to establish whether such systems serve real

and not imaginary user needs, through limited implementation and testing. It will

test social presence as the appropriate theoretical framework for these systems and

gain a first understanding of requirements for middleware and interactive devices to

support awareness services. ASTRA is a FET (Future and Emerging Technologies)

project under EU’s Framework Programme 6 under contract number IST-2001-39270,

running in 2006-2009.

The organizations which are part of the ASTRA consortium are:

• CTI (Research Academic Computer Technology Institute), brings in experience

in Designing Ambient Intelligence Systems (DAISy). The CTI DAISy research

team bridging computer science with interaction design will lead the project

and support with research in end user programming tools, design framework,

ontologies and modules development for the architecture.

14

1.2. ASTRA APPLICATIONS 15

Figure 1.1: ASTRA logo

• TU/e (Industrial design), shall bring in expertise in interaction design, user

interface technology and qualitative research methods for interaction design.

TU/e, Technology Management, shall contribute expertise in quantitative meth-

ods for assessing user experiences, social presence and experimental design.

• Telenor, shall bring in expertise on communication services and software ar-

chitectures.

• Philips, shall bring in experience in field studies and the design of user inter-

faces for entertainment and leisure. Philips will support user tests in realistic

conditions in the HomeLab, a simulated home-laboratory, especially built and

equipped for large scale field studies.

• NTNU (Norges Teknisk-Naturvitenskapelige Universitet), through Monica Div-

itini, professor of cooperation technologies in the Department of Information

and Computer Science. This project has been developed as part of the work of

this organization.

1.2 ASTRA applications

A key concept in the ASTRA project is an ASTRA application [DC09]. ASTRA

applications represent the mean to transform the services provided by the system

into awareness applications. There are two different types of applications: “Nimbus”

and “Focus” applications. Nimbus applications are used to make available awareness

1.3. MOTIVATIONS OF THE PROJECT 16

information to other users, while Focus applications are used to decide what infor-

mation we are interested in and in which way we want to receive that information.

Figure 1.2 shows a schema where we can see the relationship between the two types

of application. In this case, the user Alice has decided to create an ASTRA Nimbus

application to express her feelings (“thinking of you”) when she hugs a pillow. Once

this application is published to certain community (“family” in Figure 1.2), the rest

of the users that belong to that community can subscribe to it and define a way to

receive the information by defining a Focus application. In the case of Figure 1.2,

Alice’s brother has decided to visualize it using a lamp, which will be turned on

when Alice’s Nimbus application is triggered. Therefore, the system has been able

to capture and send this awareness information in a taylorized way.

Figure 1.2: ASTRA applications example

1.3 Motivations of the project

The aim of this project is to create a system to manage the applications we mentioned

in Section 1.2 and integrate it into the ASTRA SOA (see Section 3.2.1.2). Managing

comprises fuctionalities for sharing, tagging, locating, appropriating and adapting the

applications. Figure 1.3 shows the process of sharing and appropriating applications

through a central repository, illustrating the need of customizing the parameters that

are going to be shared (I.e.: for privacy reasons) by user A, and the need of adapting

1.3. MOTIVATIONS OF THE PROJECT 17

the application to its preferences (I.e.: connect it to his physical devices) by user

B. This process is potentially complex, therefore functionalities to help the user to

perform it are needed, as we will see in Section 4.4.4. It is important to remark the

difference between “sharing” and “publishing”. As we can see in Figure 1.2, sharing

an application implies to upload a taylorized set of information about it into the

repository, but it does not imply to send any kind of awareness information as in the

case of publishing. In the same way, “retrieving”1 an application from the repository

implies to get it and taylorized it, but not to subscribe to it. On the other hand, once

an user has appropriated and adapted the application, he will be able to publish it

as one made from the scratch.

Figure 1.3: Sharing and retrieving applications through the repository

The rest of this document describes the process carried on to develop the pre-

viously mentioned system, including a goals statement in Chapter 2, a explanation

of the employed methodology and the involved technologies in Chapter 3, a detailed

description of the project in Chapter 4, and a discussion of the fulfillment of the goals

and the personal contribution in Chapter 5.

1We will use the verbs “get”, “appropriate” or “retrieve” as synonyms when referring to an

application in this document.

Chapter 2

Objectives

In this section we will state briefly the main goals of the project. The way in which

these objectives were achieved will be discussed in Chapter 4.

The main objectives of this project are:

• Create a main repository for applications, where the users can browse, share

and retrieve them. This should be accomplished taking into account:

– The sharing process has to be flexible enough to allow the user choosing in

which communities the application is going to be shared, and which rules

are going to be shared.

– The retrieving process has to be flexible enough to allow the user a cus-

tomization of the retrieved application.

– The changes needed to adapt the application have to be as transparent to

the user as possible.

– It is necessary to implement a mechanism which allows the user to search

for applications:

∗ By different criteria: tags, description, type, etc.

∗ Using a system recommendation process, where the user just has to

select an application and some similar applications will be suggested.

• Create a system which allows the users to tag the applications. This should be

accomplished taking into account the need of different scopes for the tags:

– Private tags, which are only for personal purposes and should not be stored

in the Backend.

18

19

– Community tags, which are only visible for members of that community.

– Public tags, which are visible for all the members.

• Create a GUI which allows the user to carry out the operations defined previ-

ously. This should be performed taking into account:

– The GUI has to be connected with the rest of systems in a loose coupling

way.

– It has to be intuitive.

– It has to be extensible, so other systems can be connected to it in the

future.

Chapter 3

Methodology and involved

technologies

3.1 Methodology

Due to the researching nature of the main project, it was quite difficult to establish

a fixed set of requirements in the beginning. Therefore, we used the following system

to carry on the process:

• Establish a set of main objectives which can be expanded afterwards. The final

result is the set of objectives which was discussed in Chapter 2.

• Create a set of use cases based on these discussions.

• Create a design which has to be flexible enough to allow the introduction of

new changes in the future.

• Implement a prototype and perform tests.

• Do a demonstration.

• New elicitation requirements process if necessary.

This model follows a spiral model (see Figure 3.1), a software development process

combining elements of both design and prototyping-in-stages, in an effort to combine

advantages of top-down and bottom-up concepts.

Due to the limited extension of this document, it is not possible to explain in the

deserved detail the dynamic followed during the process. But it is important to stand

20

3.1. METHODOLOGY 21

Figure 3.1: Spiral model (Boehm, 1988)

out at least that the whole process took four iterations which are briefly explain in

the Table 3.1.

Iteration Requirements Affected components

1 Share and retrieve applications RepositoryManager & PHP EUT tools

2 Tagging TagManagerNode & TagManagerBackEnd

3 Searching capabilities RepositoryManager,

& tagging extensions TagManagerNode & TagManagerBackEnd

4 GUI ApplicationManager

Table 3.1: Iterations during the project

We have followed a methodology which can be seen as an Agile software develop-

ment methodology [San05]. The concept refers to a group of software development

methodologies based on iterative development, where requirements and solutions

evolve through collaboration between self-organizing cross-functional teams. The

term was coined in the year 2001 when the Agile Manifesto [Bo01] was formulated.

Agile methods generally promote a disciplined project management process that

encourages frequent inspection and adaptation, a leadership philosophy that encour-

ages teamwork, self-organization and accountability, a set of engineering best prac-

tices that allow for rapid delivery of high-quality software, and a business approach

that aligns development with customer needs and company goals. Conceptual foun-

3.2. INVOLVED PARADIGMS AND TECHNOLOGIES 22

dations of this framework are found in modern approaches to operations management

and analysis, such as lean manufacturing, soft systems methodology, speech act the-

ory (network of conversations approach), and Six Sigma.

This methodology fits properly with the researching nature of the project and the

fact that new requirements arise continuously.

3.2 Involved paradigms and technologies

In this section we will explain briefly the main paradigms and technologies involved

during the achievement of this project.

3.2.1 SOA

Service Oriented Architecture is a paradigm for organizing and utilizing distributed

capabilities that may be under the control of different ownership domains [McC08].

It provides a uniform means to offer, discover, interact with and use capabilities to

produce desired effects consistent with measurable preconditions and expectations.

In computing, the term Service-Oriented Architecture expresses a perspective of

software architecture that defines the use of services to support the requirements of

software users. In an SOA environment, resources on a network are made available

as independent services that can be accessed without knowledge of their underlying

platform implementation. SOA can also be regarded as a style of Information Systems

architecture that enables the creation of applications that are built by combining

loosely coupled and inter-operable services.

The main principles behind the SOA paradigm can be summarized as follows:

• Reuse

• Granularity

• Modularity

• Composability

• Componentization

• Interoperability

3.2. INVOLVED PARADIGMS AND TECHNOLOGIES 23

• Compliance to standards (both common and industry-specific) (e.g. Web Ser-

vices)

• Services identification and categorization, provisioning and delivery, and mon-

itoring and tracking

3.2.1.1 SOAP and Apache Axis

SOAP is a lightweight protocol for exchanging structured information in a decentral-

ized, distributed environment [Le 02]. It is an XML (see Section 3.2.5) based protocol

that consists of three parts: an envelope that defines a framework for describing what

is in a message and how to process it, a set of encoding rules for expressing instances

of application-defined datatypes, and a convention for representing remote procedure

calls and responses.

The implementation we have used is Apache Axis, it consists of an open source

Java and C++ implementation of the SOAP server, and various utilities and APIs for

generating and deploying Web service applications. Using Apache Axis, it is possible

to create interoperable and distributed computing applications. Axis is developed

under the auspices of the Apache Software Foundation.

3.2.1.2 ASTRA SOA

The ASTRA Service-Oriented Architecture is the backbone of ASTRA [BP09]. It

includes the platform for awareness services, the ontology, ontology management,

context management, service discovery, and other necessary modules like the ones

developed for this project.

These services are offered by a set of bundles (see Section 3.2.3) that can be

grouped into two subsystems from a high level point of view: ASTRA Node and

ASTRA Backend, following a Client-Server model1. Therefore it is important to

distinguish between the local and remote nature connection when consuming other

bundles services, to take into account the limitations in the type of objects we can

use for our web services interfaces in the case of remote connections, and to threat

properly possible problems in the network.

1There has been some discussion about the possibility of following a P2P model in ASTRA, but

this is out of the scope of the current implementation.

3.2. INVOLVED PARADIGMS AND TECHNOLOGIES 24

Below are listed the bundles whose services have been used by the bundles devel-

oped for this project. The dependencies with them are explained in Sections 4.3.2.1,

4.3.3.1, 4.3.4.1 and 4.3.5.1.

• UserManager: It is the responsible for managing users and their profiles, as well

as the management of the user identities. It is executed in the Backend.

• CommunityManager: It is the responsible for providing the possibility to define,

share and connect virtual community representations in within which users can

share awareness information. It is executed in the Backend.

• AwarenessManager: It is the responsible for the connection between low level

user-system interaction and the high level concepts related to them. It is con-

nected with the Rules engine kernel. It is executed in the Nodes.

• AwarenessApplicationManager: It is the responsible for storing and managing

the local awareness applications. It is executed in the Nodes.

• OntologyManager: It is the responsible for managing, looking-up and extending

the ontologies. It is executed in the Nodes.

• PersistencyManager: It is the responsible for providing storage functionalities.

It is executed in the Backend and the Nodes.

• RemoteFrameworkManager: It is the responsible for providing facilities to con-

sume remote bundles services. It is executed in both subsystems.

• EventsManager: It is the responsible for providing facilities to communicate

events between the bundles. It is executed in both subsystems.

3.2.2 Java

Most of the development tasks during the project were coded using Java. Java is a

programming language originally developed by James Gosling at Sun Microsystems

and released in 1995 as a core component of Sun Microsystems’ Java platform. The

language derives much of its syntax from C and C++ but has a simpler object model

and fewer low-level facilities. Java applications are typically compiled to bytecode

(class file) that can run on any Java virtual machine (JVM) regardless of computer

architecture.

3.2. INVOLVED PARADIGMS AND TECHNOLOGIES 25

The original and reference implementation Java compilers, virtual machines, and

class libraries were developed by Sun from 1995. As of May 2007, in compliance with

the specifications of the Java Community Process, Sun made available most of their

Java technologies as free software under the GNU General Public License. Others

have also developed alternative implementations of these Sun technologies, such as

the GNU Compiler for Java and GNU Classpath.

Java has significant advantages over other languages and environments that make

it suitable for just about any programming task.

The advantages of Java are as follows:

• Java is easy to learn: Java was designed to be easy to use and is therefore easier

to write, compile, debug, and learn than other programming languages.

• Java is object-oriented: This allows us to create modular programs and reusable

code.

• Java is platform-independent: One of the most significant advantages of Java is

its ability to move easily from one computer system to another. The ability to

run the same program on many different systems is crucial to World Wide Web

software, and Java succeeds at this by being platform-independent at both the

source and binary levels.

Because of Java’s robustness, ease of use, cross-platform capabilities and secu-

rity features, it has become a language of choice for providing worldwide Internet

solutions.

3.2.3 OSGi

OSGi (Open Services Gateway initiative) is a flexible framework, which provides a

standardized environment for service deployment and operation. The Framework

implements an elegant, complete, and dynamic component model; something that is

missing in standalone Java/VM environments. The platform is java-based and can

be remotely managed. In Figure 3.2 we can see the OSGi layered model.

Applications or components (coming in the form of bundles for deployment) can

be remotely installed, started, stopped, updated and uninstalled without requiring

a reboot. Bundles are deployed on an OSGi framework, the bundle runtime envi-

ronment. This is not a container like Java Application Servers. It is a collaborative

3.2. INVOLVED PARADIGMS AND TECHNOLOGIES 26

Figure 3.2: OSGi layered model

environment. Bundles run in the same VM and can actually share code. The frame-

work uses the explicit imports and exports to wire up the bundles so they do not

have to concern themselves with class loading.

The original focus was on service gateways but the applicability turned out to

be much wider. Implementations of the OSGi framework specification are available

for a range of different environments and device classes, from backend systems via

desktops to mobile devices. A well-known and popular usage for its flexibility is the

Eclipse development framework, which is completely based on OSGi. The longest

history can OSGi claim on embedded systems, where it originally was designed for.

Currently Nokia is integrating OSGi technologies into their latest phones. But also

big application servers like IBM WebSphere 6.1 start adapting this technology.

3.2.3.1 OSGi-Knopflerfish

Knopflerfish is a non-profit organization, developing OSGi related material. The

project provides easy to use open source certified implementation of the OSGi R4 core

framework specification, as well as related build tools and applications. Knopflerfish

is available under a BSD style license.

3.2.3.2 Why using OSGi in ASTRA?

OSGi enforces a clean service oriented design approach, with a clear distinction be-

tween interfaces and implementation. Services are deployed in bundles, which can be

installed, updated and removed during the runtime of the framework. OSGi is thus

ideally suited to realizing the principles of the SOA paradigm. OSGi also provides

3.2. INVOLVED PARADIGMS AND TECHNOLOGIES 27

an Apache Axis (see Section 3.2.1.1) bundle that allows for automatic generation of

web service interfaces.

The decision of using the OSGi framework has several severe impacts on the design

of the functional components. The most important implications for the component

design are summarized here:

• Services are de-coupled. A service must not take any assumptions about the

existence and life-cycle of any other service it might want to use (concept of

“minimal assumptions”).

• Services communicate only through their exposed interfaces.

• A service must not take any assumptions about the implementation details of

any other service. The smallest unit for code deployment is a bundle, which

might simply contain API’s or one or more service implementations.

It is worth stressing that OSGi is chosen as a platform, but it is in no way a

requirement by ASTRA to use OSGi. It is used because it offers a flexible and

convenient way of deploying the ASTRA SOA functional components. Any ASTRA

component can be developed outside OSGi, and made available through a Web Service

interface.

3.2.4 Swing

Swing is a widget toolkit for Java. It is part of Sun Microsystems Java Founda-

tion Classes (JFC), an API for providing a graphical user interface (GUI) for Java

programs.

Swing was developed to provide a more sophisticated set of GUI components than

the earlier Abstract Window Toolkit. It provides a native look and feel that emulates

the look and feel of several platforms, and also supports a pluggable look and feel

that allows applications to have a look and feel unrelated to the underlying platform.

Swing has been used to develop a bundle which implements a GUI to allow the

user to perform all the operations related to the applications and tags management

process. The reason why Swing was chosen is the set of features that its architecture

provides:

3.2. INVOLVED PARADIGMS AND TECHNOLOGIES 28

• Platform independence: Swing is platform independent both in terms of its

expression (Java) and its implementation (non-native universal rendering of

widgets).

• Extensibility: Swing is a highly partitioned architecture, which allows for the

“plugging” of various custom implementations of specified framework interfaces:

Users can provide their own custom implementation(s) of these components to

override the default implementations. In general, Swing users can extend the

framework by extending existing (framework) classes and/or providing alterna-

tive implementations of core components.

• Component-oriented: Swing is a component-based framework. The distinction

between objects and components is a fairly subtle point: concisely, a compo-

nent is a well-behaved object with a known/specified characteristic pattern of

behaviour. Swing objects asynchronously fire events, have “bound” properties,

and respond to a well-known set of commands (specific to the component).

Specifically, Swing components are Java Beans components, compliant with

the Java Beans Component Architecture specifications.

• Customizable: Given the programmatic rendering model of the Swing frame-

work, fine control over the details of rendering of a component is possible in

Swing. As a general pattern, the visual representation of a Swing component

is a composition of a standard set of elements, such as a “border”, “inset”,

decorations, etc. Typically, users will programmatically customize a standard

Swing component (such as a JTable) by assigning specific Borders, Colors,

Backgrounds, opacities, etc., as the properties of that component. The core

component will then use these property (settings) to determine the appropriate

renderers to use in painting its various aspects. However, it is also completely

possible to create unique GUI controls with highly customized visual represen-

tation.

• Configurable: Swing’s heavy reliance on runtime mechanisms and indirect com-

position patterns allows it to respond at runtime to fundamental changes in its

settings. For example, a Swing-based application can change its look and feel

at runtime. Further, users can provide their own look and feel implementa-

tion, which allows for uniform changes in the look and feel of existing Swing

3.2. INVOLVED PARADIGMS AND TECHNOLOGIES 29

applications without any programmatic change to the application code.

These traits allowed us to fulfill successfully the requirements for the above-

mentioned bundle, which will be explained deeply in Sections 4.3.5 and 4.4.2.

3.2.5 XML

XML (eXtensible Markup Language) is a general-purpose specification for creating

custom markup languages. It is classified as an extensible language, because it allows

the user to define the mark-up elements.

XML’s purpose is to aid information systems in sharing structured data, especially

via the Internet, to encode documents, and to serialize data; in the last context,

it compares with text-based serialization languages such as JSON, YAML, and S-

Expressions.

XML’s set of tools helps developers in creating web pages but its usefulness goes

well beyond that. XML, in combination with other standards, makes it possible

to define the content of a document separately from its formatting, making it easy

to reuse that content in other applications or for other presentation environments.

Most importantly, XML provides a basic syntax that can be used to share information

between different kinds of computers, applications and organizations without needing

to pass through many layers of conversion.

XML began as a simplified subset of the Standard Generalized Markup Lan-

guage (SGML), meant to be readable by people via semantic constraints. Applica-

tion languages can be implemented in XML. These include XHTML, RSS, MathML,

GraphML, Scalable Vector Graphics, MusicXML, and others. Moreover, XML is

sometimes used as the specification language for such application languages.

XML is recommended by the World Wide Web Consortium (W3C). It is a fee-free

open standard. The recommendation specifies lexical grammar and parsing require-

ments.

As we will explain in detail in Section 4.4.4, XML is the language used to represent

the rules in ASTRA.

3.2.6 DOM

The Document Object Model (DOM) is a cross-platform and language-independent

convention for representing and interacting with objects in HTML, XHTML and

3.2. INVOLVED PARADIGMS AND TECHNOLOGIES 30

XML documents. Objects under the DOM (also sometimes called “Elements”) may

be specified and addressed according to the syntax and rules of the programming

language used to manipulate them. The rules for programming and interacting with

the DOM are specified in the DOM Application Programming Interface (API).

As we will explain in detail in Section 4.4.4, DOM was used to access and modify

the rules in ASTRA.

3.2.7 Lucene

Apache Lucene is an open source information retrieval library, originally created in

Java by Doug Cutting. It is supported by the Apache Software Foundation and is

released under the Apache Software License. Lucene itself is just an indexing and

search library and does not contain crawling and HTML parsing functionality: it is

not an application. It allowed us to create a search engine integrated in one of the

bundles (see Sections 4.3.2 and 4.4.3) to offer searching capabilities in it. The main

reasons why Lucene was proposed (and accepted) were:

• It is open-source.

• It has a great performance.

• It is quite flexible and easy to extend if more functionalities are needed in the

future.

• It is cross-platform.

3.2.8 MySQL

MySQL is a relational database management system (RDBMS) very popular in the

free and open source software communities. The program runs as a server providing

multi-user access to a number of databases.

The project’s source code is available under terms of the GNU General Public

License, as well as under a variety of proprietary agreements. MySQL is owned

and sponsored by a single for-profit firm, the Swedish company MySQL AB, now a

subsidiary of Sun Microsystems, which holds the copyright of most of the code.

MySQL is commonly used by free software projects which require a full-featured

database management system, such as WordPress, phpBB and other software built

3.2. INVOLVED PARADIGMS AND TECHNOLOGIES 31

on the LAMP software stack. It is also used in very high-scale World Wide Web

products including Google and Facebook.

MySQL is the RDBMS system which is used for taking care of the persistence in

ASTRA.

Chapter 4

Description

In this chapter we will detail the process carried on to transform the initial objectives

into requirements, and the design and development of the application based on them.

4.1 Requirements

In this section we will describe shortly the requirements that we gathered during

the several requirements elicitation processes performed during all the iterations (see

Table 3.1). It is interesting to remark that this process becomes even more impor-

tant (and challenging) in projects of a researching nature like ASTRA, due to the

continuous rise of requirements implicit in its kind.

Tables 4.1 and 4.2 summarize the most important functional and non functional

requirements that we gathered respectively.

32

4.1. REQUIREMENTS 33

Functional requirements

1. Create a repository to store awareness applications.

2. The information to share can be customized by the user before being stored.

3. The repository has to take into account the visibility of the applications

in terms of communities.

4. It is necessary to offer functionalities to browse the repository by communities.

5. It is necessary to create a mechanism to search applications by different

criteria (tags, description, type or any).

6. It is necessary to create a mechanism to recommend applications based

on the similarity with respect to another application.

7. During the appropriation of an application, it is necessary to offer

the user the possibility of customizing the application (i.e.: choosing the rules).

8. Create a mechanism to obtain a “human readable” description of a rule.

9. Create a system which allows us to tag applications choosing the visibility:

public, communities or private.

10. Create a GUI which allows the interaction with the repository and perform

common operations (logging in, showing help, etc.).

Table 4.1: Functional requirements

Non functional requirements

1. The functionalities have to be offered by OSGi bundles through their

web services interfaces.

2. The system has to perform the retrieving process as transparent as possible

for the user.

3. All the components have to be multiplatform.

4. The GUI has to be intuitive.

5. The GUI has to be easy to connect to other bundles in the future.

6. It is necessary to study the possibility of using ontology services provided

by OntologyManager in order to improve the performance of some

of the functionalities (i.e.: application adaptation).

Table 4.2: Non functional requirements

4.2. USE CASES 34

4.2 Use cases

In this section we will state the main use cases identified and we detail the interactions

of the main scenarios for each of them.

4.2.1 Repository management

The Figure 4.1 shows the main use cases related with the repository management

process, which are detailed in Tables 4.3, 4.4 and 4.5.

Figure 4.1: Repository management use cases

4.2. USE CASES 35

Browse applications

Brief description: Actor browses repository applications.

Actors: Authenticated ASTRA user.

Preconditions: There are applications visible for that user.

Basic flow of events:

1. User expands the applications tree.

2. User selects an application.

3. System retrieves all the information related to it.

4. System displays the information.

Postconditions: -

Table 4.3: Browse applications - general scenario description

Share application

Brief description: Actor shares an application in the repository.

Actors: Authenticated ASTRA user.

Preconditions: A local application has been selected.

Basic flow of events:

1. User selects share application.

2. System displays all the information related to it.

3. User customizes the parameters to be shared:

visibility in terms of communities, rules, description, etc.

4. User confirms the sharing process.

5. System validates the parameters.

6. System confirms the application was shared properly.

Postconditions: A new application is available in the repository.

Table 4.4: Share application - general scenario description

4.2. USE CASES 36

Retrieve application

Brief description: Actor retrieves an application from the repository.

Actors: Authenticated ASTRA user.

Preconditions: An application from the repository has been selected.

Basic flow of events:

1. User selects retrieve application.

2. System displays all the information related to it.

3. User customizes the parameters to be retrieved: rules and description.

4. User confirms the retrieving process.

5. System validates the parameters.

6. System confirms the application was retrieved properly.

Postconditions: A new application is available in the user local space.

Table 4.5: Retrieve application - general scenario description

4.2. USE CASES 37

4.2.2 Searching

The Figure 4.2 shows the main use cases related with the searching requirements,

which are detailed in Tables 4.6 and 4.7.

Figure 4.2: Searching use cases

Searching by criteria

Brief description: Actor searches for an application typing some keywords and a criterion.

Actors: Authenticated ASTRA user.

Preconditions: -

Basic flow of events:

1. User enters one or more keywords.

2. User selects a criterion (by tags, by description, by type or any).

3. System performs a search based on the given parameters.

4. System displays matching applications.

Postconditions: -

Table 4.6: Search by criteria - general scenario description

4.2. USE CASES 38

Searching by similarity

Brief description: Actor searches for applications that are similar to a given application.

Actors: Authenticated ASTRA user.

Preconditions: -

Basic flow of events:

1. User selects an application.

2. System compares the selected application with

applications in the repository using different measures.

3. System displays matching applications.

Postconditions: -

Table 4.7: Search by similarity - general scenario description

4.2. USE CASES 39

4.2.3 Tags management

The Figure 4.3 shows the main use cases related with the tags management process,

which are detailed in Tables 4.8 and 4.9.

Figure 4.3: Tagging use cases

4.2. USE CASES 40

Add tag

Brief description: Actor adds a tag to an application specifying the level

of visibility of the tag.

Actors: Authenticated ASTRA user.

Preconditions: An application has been selected.

Basic flow of events:

1. User enters a tag name.

2. User specifies tag visibility.

3. System validates tag.

4. System stores the tag.

5. System confirms that tag has been added.

Postconditions: A new tag is associated to the application

and is made available within the proper scope.

Table 4.8: Add tag - general scenario description

Remove tag

Brief description: Actor removes a tag from an application.

Actors: Authenticated ASTRA user.

Preconditions: User has previously tagged the selected application.

Basic flow of events:

1. User selects a tag.

2. System displays option to remove the tag.

3. User chooses to remove the tag.

4. System deletes the tag.

5. System confirms that tag has been deleted.

Postconditions: The specified tag is no longer associated with the specified application.

Table 4.9: Remove tag - general scenario description

4.2. USE CASES 41

4.2.4 Other general functionalities

The Figure 4.4 shows use cases that capture other general functionalities, which are

detailed in Tables 4.10, 4.11 and 4.12.

Figure 4.4: Other general functionalities

Logging in

Brief description: Actor logs in the system.

Actors: Non-authenticated ASTRA user.

Preconditions: Login window is displayed.

Basic flow of events:

1. User types username and password.

2. System validates them.

3. System loads user’s profile.

4. System displays the main menu and disposes the login window.

Postconditions: -

Table 4.10: Logging in - general scenario description

4.2. USE CASES 42

Logging out

Brief description: Actor logs out of the system.

Actors: Authenticated ASTRA user.

Preconditions: Main window is displayed.

Basic flow of events:

1. User selects logout option.

2. System asks for confirmation.

3. User confirms.

4. System closes user’s session, disposes the main window and

displays the login window

Postconditions: -

Table 4.11: Logging out - general scenario description

Look up help

Brief description: Actor looks up the online help.

Actors: Authenticated ASTRA user.

Preconditions: -

Basic flow of events:

1. User selects online help option.

2. System retrieves the remote help.

3. System displays the help contents in an intuitive way.

Postconditions: -

Table 4.12: Look up help - general scenario description

4.3. DESIGN 43

4.3 Design

In this section we will explain the most important design decisions and the reasons

why they were taken. We will also go into detail in the most remarkable characteris-

tics.

4.3.1 Bundles design

One of the first and most important decisions is how to divide the functionality into

components. Having the requirement of using OSGi, it seems natural to use a bundle

as the notion of component. The final design consists of four bundles:

• RepositoryManager, which has the following responsibilities:

– Offer services to share applications.

– Offer services to retrieve applications.

– Storage of shared applications.

– Offer services to search applications by criteria.

– Offer services to search applications by similarity.

• TagManagerBackEnd, which has the following responsibilities:

– Offer services to add and delete public and community tags.

– Offer services to retrieve those tags in different and flexible ways.

• TagManagerNode, which has the following responsibilities:

– Offer services to add and delete private tags.

– Offer services to retrieve those tags in different and flexible ways.

• ApplicationManager, which is responsible of the interaction with the user, and

connects with the proper bundles to satisfy his requests.

The components diagram in Figure 4.5 shows the connection between all of them

through its interfaces1:

Sections 4.3.2, 4.3.3, 4.3.4 and 4.3.5 explain the most important features of each

of them.
1The connection with the rest of ASTRA bundles is omitted for simplicity reasons, but it will

be discussed in the section where every bundle is explained.

4.3. DESIGN 44

Figure 4.5: Relationships between the bundles developed for this project (components

diagram)

4.3.2 RepositoryManager

Since one of the most important goals of the project is the need of allowing the users

to share and retrieve applications, RepositoryManager is one of the key pieces of the

project. This bundle is executed in the Backend (server-side), and it offers a clear

interface to make its services available for the rest of the bundles in ASTRA.

In this section we will explain the process we followed to perform its design. Some

of the trickiest implementation details about this bundle are explained in Section 4.4.

4.3.2.1 Connection with other bundles

The first step consists of analyzing the relationship between this bundle and the rest

of bundles in ASTRA. Taking into account the requirements stated in Section 4.1

and the analysis performed in Sections 4.2.1 and 4.2.2, we needed to make use of the

services of the following bundles:

• CommunityManager: Necessary to retrieve information about the relationship

between users, their communities and the applications. I.e.: to assure the

visibility of certain application taking into account the communities joined for

an user who is going to retrieve applications.

4.3. DESIGN 45

• TagManagerBackEnd2: Necessary to analyze the tags in order to construct the

index of the search engine.

• EventsManager: Necessary to keep track of the events produced in

TagManagerBackEnd, in order to keep the index of the search engine updated.

I.e: new tags or tags that have been deleted.

• PersistencyManager: Necessary to store permanently all the data into the

database. Using its services, we assure the robustness of the system.

The Figure 4.6 shows graphically the relationship between RepositoryManager

and the rest of components through its interfaces.

Figure 4.6: RepositoryManager (components diagram)

4.3.2.2 Interface definition

The next step carried on was defining an interface. The Tables 4.13, 4.14, 4.15 and

4.16 summarize the methods offered by the final version of RepositoryManager.

2The design of this bundle is explained in Section 4.3.3

4.3. DESIGN 46

createSharedApplication

Description: Create a new shared application in the repository.

Parameter Type Description

appId String Application identifier in the standard ASTRA format.

userId String Identifier of the user who uploads the application.

appType String Type of application.

appDescription String Application description.

Returns: Boolean, true if everything is ok, false if there was a failure.

deleteSharedApplication

Description: Delete a SharedApplication in the repository.

Parameter Type Description

appId String Application identifier in the standard ASTRA format

Returns: Boolean, true if the application was deleted properly, false otherwise.

shareInCommunity

Description: Store relationship between a shared application and a community.

Parameter Type Description

userId String User identifier in the standard format.

appId String Application identifier in the standard ASTRA format.

communityId String Community identifier in the standard format.

Returns: Boolean, true if the operation was successful, false otherwise.

createSharedRule

Description: Create a new shared rule associated to the application.

Parameter Type Description

userId String User identifier in the standard format.

appId String Application identifier in the standard ASTRA format.

ruleId String Rule identifier in the standard format.

xmlData String XML file which contains the rule.

Returns: Boolean, true if the operation was successful, false otherwise.

Table 4.13: RepositoryManager interface

4.3. DESIGN 47

listSharedApplications

Description: Returns the list of applications in the repository visible for that user.

Parameter Type Description

userId String User identifier in the standard format.

Returns: String array, list of applications.

listSharedRules

Description: Returns the list of rules in the repository associated to appID

Parameter Type Description

appId String Application identifier in the standard ASTRA format.

Returns: String array, list of rule identifiers.

getXmlData

Description: Returns the XML file which describes the rule.

Parameter Type Description

appId String Application identifier in the standard ASTRA format.

ruleId String Rule identifier in the standard format.

Returns: String, XML file describing the rule.

getSharedApplicationName

Description: Returns the name of the application.

Parameter Type Description

appId String Application identifier in the standard ASTRA format.

Returns: String, application name.

getSharedApplicationOwner

Description: Returns the owner of the application.

Parameter Type Description

appId String Application identifier in the standard ASTRA format.

Returns: String, application owner.

getSharedApplicationDescription

Description: Returns the description of the application.

Parameter Type Description

appId String Application identifier in the standard ASTRA format.

Returns: String, application description.

Table 4.14: RepositoryManager interface (II)

4.3. DESIGN 48

getSharedApplicationDate

Description: Returns the date of the application.

Parameter Type Description

appId String Application identifier in the standard ASTRA format.

Returns: String, application date.

getSharedApplicationType

Description: Returns the type of the application.

Parameter Type Description

appId String Application identifier in the standard ASTRA format.

Returns: String, application type.

isAlreadyShared

Description: Checks if an application has already been shared.

Parameter Type Description

appId String Application identifier in the standard ASTRA format.

Returns: Boolean, true if already exists, false otherwise.

getXmlRuleDescription

Description: Returns a description of the rule in a readable

way using the XML file information.

Parameter Type Description

appId String Application identifier in the standard ASTRA format.

ruleId String Rule identifier in the standard format.

Returns: String, description of the rule.

getXmlRule

Description: Returns the XML file which describes the rule with

the ownership already modified.

Parameter Type Description

appId String Application identifier in the standard ASTRA format.

ruleId String Rule identifier in the standard format.

newUserId String New user identifier in the standard format.

Returns: String, XML file associated to the rule.

Table 4.15: RepositoryManager interface (III)

4.3. DESIGN 49

search (overloaded)

Description: It performs a search according to one criterion.

Parameter Type Description

userId String Identifier of the user who is performing the search.

q String Query.

criterion String Criterion to use.

Returns: String array, with the identifiers of the matching applications.

search (overloaded)

Description: It performs a search according to a set of criteria.

Parameter Type Description

userId String Identifier of the user who is performing the search.

q String Query.

criteria String array Criteria to use.

Returns: String array, with the identifiers of the matching applications.

searchBySimilarity

Description: It performs a search of similar applications.

Parameter Type Description

userId String Identifier of the user who is performing the search.

appId String Application identifier in the standard ASTRA format.

appDescription String Application description.

Returns: String array, with the identifiers of the matching applications.

Table 4.16: RepositoryManager interface (IV)

4.3. DESIGN 50

4.3.2.3 Classes definition

The functionalities of this bundle are structured in a set of classes from which we will

remark:

• RepositoryManagerImpl:

– It implements all the methods of IRepositoryManager.

– It manages the connection with the rest of the bundles.

– It takes care of the integration with the search engine.

• SharedApplication: It represents an application in the repository. It is com-

posed by SharedRules.

• SharedRule: It represents a shared rule in the repository.

• SearchEngine: It implements a search engine to perform queries about the

applications in the repository.

• XMLFunctionalities: Class which provides auxiliar abstract methods related

to the XML functionalities (i.e. method to create a rule description receiving

the XML file).

The Figure 4.7 shows the most important classes with its main methods, and the

relationship between them.

4.3.2.4 Storage system

Finally, we needed to design a database model for RepositoryManager. We designed

it taking into account the following relationships:

• An user owns (has shared) 0..n applications in the repository.

• A shared application has 1..n shared rules.

• A shared application is visible for 1..n communities.

• A community has 0..n shared applications.

• A shared application has 0..n tags.

4.3. DESIGN 51

Figure 4.7: RepositoryManager (class diagram)

The Figure 4.8 shows a database diagram with all the necessary tables and the

relationships between them which were previously enumerated.

It is also important to remark that in order to increase the performance in query-

ing, the repository keeps also a copy in memory of all the information about the

applications and the rules stored. This information is stored in hash tables that are

synchronized with the data in the database.

This decision introduces as a drawback the need of duplicating the number of create

and delete operations (which have to be executed in memory and in the database)

and arises the need of establishing synchronization mechanisms to have consistent

copies in both sides. But considering that most of the operations are to retrieve

4.3. DESIGN 52

Figure 4.8: RepositoryManager (database model)

information (i.e.: all the needed operations for searching or getting an application)

the global performance also increases.

4.3.3 TagManagerBackEnd

As it was explained in Section 4.3.1 we decided to divide the tags management into

two components: TagManagerBackEnd and TagManagerNode (which will be explained

in Section 4.3.4).

TagManagerBackEnd is the bundle that manages the public and community tags. It

is executed in the Backend, and it possess an interface to make its services available

to the rest of the bundles in ASTRA. The initial version of the code was based on the

code for a tagging system under the project Ubicollab3 by Christian Laverton, which

is licensed under an Apache License (version 2.0). It was first adapted for ASTRA,

3Ubiquitous Collaboration: is an open source project aiming at implementing a platform for

mobile communities developed at NTNU (http://ubicollab.idi.ntnu.no).

4.3. DESIGN 53

and extended afterwards.

In this section we will explain the process we followed to carry on its design, taking

a similar approach to the one we took to design RepositoryManager (Section 4.3.2).

4.3.3.1 Connection with other bundles

The first step consisted of defining the relationship between TagManagerBackEnd and

the rest of the bundles in ASTRA.

Taking into account the requirements stated in Section 4.1 and the analysis per-

formed in Section 4.2.3, we needed to make use of the services of the following bundles:

• CommunityManager: Necessary to retrieve information about the relationship

between users, their communities and the tags. I.e.: to make available certain

tag taking into account the scope in terms of visibility of the user.

• EventsManager: Necessary to give feedback of the events produced in it. I.e:

to inform other bundles that a tag has been added.

• PersistencyManager: Necessary to store permanently all the data into the

database. Using its services, we assure the robustness of the system.

The Figure 4.9 shows graphically the relationship between TagManagerBackEnd

and the rest of components through its interfaces.

4.3.3.2 Interface definition

The next step consisted of defining its interface. The Tables 4.17 and 4.18 summarize

the methods offered by the final version of TagManagerBackEnd.

4.3. DESIGN 54

Figure 4.9: TagManagerBackEnd (components diagram)

4.3. DESIGN 55

addTag (overloaded)

Description: Creates a public tag.

Parameter Type Description

name String Tag name.

appId String Application identifier in the standard ASTRA format.

userId String Identifier of the user who tags the application.

Returns: Boolean, true if the operation was successful, false otherwise.

addTag (overloaded)

Description: Creates a tag only visible for that community.

Parameter Type Description

name String Tag name.

appId String Application identifier in the standard ASTRA format.

userId String Identifier of the user who tags the application.

communityId String Community identifier.

Returns: Boolean, true if the operation was successful, false otherwise.

getTags

Description: Returns a list of public tags for the given application.

Parameter Type Description

appId String Application identifier in the standard ASTRA format.

limit Integer Limit on number of results returned.

Returns: String array, list of public tags for the given application.

getTagsByCommunity

Description: Returns a list of public tags for the given application and community.

Parameter Type Description

appId String Application identifier in the standard ASTRA format.

limit Integer Limit on number of results returned.

communityId String Community identifier.

Returns: String array, list of public tags for the given application and community.

Table 4.17: TagManagerBackEnd interface

4.3. DESIGN 56

getTagsByApplication

Description: Returns a list of tags associated to the application which are public

or visible for that user (because he belongs to that community).

Parameter Type Description

appId String Application identifier in the standard ASTRA format.

userId String User identifier.

limit Integer Limit on number of results returned.

Returns: String array, list of visible tags for this user associated to the given application.

deleteTag (overloaded)

Description: Deletes a public tag.

Parameter Type Description

name String Tag name.

appId String Application identifier in the standard ASTRA format.

userId String Identifier of the user who tagged the application.

Returns: Boolean, true if the operation was successful, false otherwise.

deleteTag (overloaded)

Description: Deletes a tag for a given community.

Parameter Type Description

name String Tag name.

appId String Application identifier in the standard ASTRA format.

userId String Identifier of the user who tagged the application.

communityId String Community identifier.

Returns: Boolean, true if the operation was successful, false otherwise.

Table 4.18: TagManagerBackEnd interface (II)

4.3. DESIGN 57

4.3.3.3 Classes definition

The definition of the classes in this case is simpler than the one explained in Section

4.3.2.3: the main functionalities are provided by the class TagManagerBackEnd, which

implements the methods of the interface ITagManagerBackEnd explained before in

Section 4.3.3.2 and is responsible for the communication with the bundles.

The Figure 4.10 shows the class diagram for this bundle.

Figure 4.10: TagManagerBackEnd (class diagram)

4.3.3.4 Storage system

The storage system in this case is also simpler: it consists only of one table as in the

code in which was based, allowing back compatibility.

The relationships between this table and the repository tables are shown in the pre-

viously explained Figure 4.8.

4.3.4 TagManagerNode

As it was introduced in Section 4.3.3, TagManagerNode is the bundle responsible for

the private tags. It is executed in the nodes (client side), and it has an interface to

offer its services to the rest of the bundles in ASTRA.

4.3. DESIGN 58

In this section we will explain the process we followed to carry on its design,

taking a similar approach to the one we took previously. TagManagerNode is similar

to TagManagerBackEnd and, since it has to take care only of private tags, its design is

simpler. Therefore the explanation in this case will not be so detailed and the reader

will be forwarded to previous subsections when a similar concept arises.

4.3.4.1 Connection with other bundles

As is shown in Figure 4.11, TagManagerNode needs only the services of PersistencyManager,

which allow it to store its data permanently.

Figure 4.11: TagManagerNode (components diagram)

4.3.4.2 Interface definition

TagManagerNode‘s interface is summarize in Table 4.19.

4.3. DESIGN 59

addTag

Description: Creates a new private tag.

Parameter Type Description

name String Tag name.

appId String Application identifier in the standard ASTRA format.

userId String Identifier of the user who tags the application.

Returns: Boolean, true if the operation was successful, false otherwise.

getTags

Description: Returns a list of private tags for the given application.

Parameter Type Description

appId String Application identifier in the standard ASTRA format.

userId String Identifier of the user.

limit Integer Limit on number of results returned.

Returns: String array, list of private tags for the given application.

deleteTag

Description: Deletes a private tag.

Parameter Type Description

name String Tag name.

appId String Application identifier in the standard ASTRA format.

userId String Identifier of the user who tagged the application.

Returns: Boolean, true if the operation was successful, false otherwise.

Table 4.19: TagManagerNode interface

4.3. DESIGN 60

4.3.4.3 Classes definition

The main functionalities are provided by the class TagManagerNode as is shown in

the Figure 4.12.

Figure 4.12: TagManagerNode (class diagram)

4.3.4.4 Storage system

It consists only of one table, following an schema similar to the one explained in

Section 4.3.3.4.

4.3.5 ApplicationManager

The last bundle is ApplicationManager, which is in charge of the interaction with

the user by offering an intuitive GUI, and the connection with other ASTRA bundles

services based on that interaction. It is executed in the Node side, and it makes uses

of the services offered by the bundles in both edges: Node (client side) and Backend

(server side).

In this section we will explain the process we followed to carry on its design. The

most important implementation details about this bundle are explained in Section

4.4.

4.3. DESIGN 61

4.3.5.1 Connection with other bundles

First we need to analyze the relationship between this bundle and the rest of bun-

dles in ASTRA. Taking into account the requirements stated in Section 4.1 and the

analysis performed in Section 4.2, it was necessary to use the services of the following

bundles:

• Local bundles:

– AwarenessApplicationManager: Necessary to send and receive informa-

tion about the local applications.

– AwarenessManager: Necessary to send and receive information about the

local rules.

– TagManagerNode: Necessary to manage the private tags.

– OntologyManager: Necessary to assist the user in the application adapta-

tion process using ontologies4.

• Remote bundles:

– UserManager: Necessary to authenticate the users during the logging in

process.

– CommunityManager: Necessary to retrieve information about the commu-

nities joined by the user.

– TagManagerBackend: Necessary to manage the public and community

tags.

– RepositoryManager: Necessary to share and retrieve applications with

the rest of the users.

The Figure 4.13 shows graphically the relationship between ApplicationManager

and the rest of bundles.

4This feature is not available in the current version of ASTRA, but ApplicationManager has

been prepared to be easily extended. A detailed explanation can be found in Section 4.4.4.

4.3. DESIGN 62

Figure 4.13: ApplicationManager (components diagram)

4.3.5.2 Bundle architecture

In this subsection we will explain briefly the architectural and design patterns which

are implemented by this bundle5, and we will discuss the reasons why they were

chosen.

Singleton (design pattern):

A design pattern is a description for a commonly recurring structure of communi-

cating components that solves a general design problem within a particular context.

It provides a scheme for refining the components of a software system and the rela-

tionships between them.

In order to implement the MVC architectural pattern, we made use of the singleton

5The implementation details will be stated in Section 4.4.

4.3. DESIGN 63

design pattern in the controller. The singleton pattern makes the class itself respon-

sible for keeping track of its sole instance, ensuring that no other instance can be

created.

The Figure 4.14 shows a singleton general class diagram.

Figure 4.14: Singleton design pattern

MVC (architectural pattern):

An architectural pattern expresses a fundamental structural organisation or schema

for software systems. It provides a set of predefined subsystems, specifies their respon-

sibilities, and includes rules and guidelines for organising the relationships between

them.

ApplicationManager implements a MVC (Model-View-Controller) pattern, which

allows us to isolate the business logic from the user interface, permitting one to be

freely modified without affecting the other. The controller collects user input, the

model manipulates application data, and the view presents results to the user.

The details about how MVC was implemented in the bundle can be found in Section

4.4, and the design of the classes is explained in Section 4.3.5.3.

4.3.5.3 Classes definition

As we stated in Section 4.3.5.2, ApplicationManager implements a MVC pattern.

Therefore the class definition is based on the structural organization defined for this

pattern which we can summarize as follows:

• Controller: It is represented by the class ApplicationManagerController,

whose job is to contain the interactions of the user interface components and

4.3. DESIGN 64

to interact with other “business logic” classes. It implements a singleton design

pattern. It needs basically to perform two functions:

– To keep track of the references to the user interface components.

– To provide a set of methods that other components can directly call in

their event handler.

• Model: It is represented by the class ApplicationManagerModel, which con-

tains the “business logic”. Taking into account the bundle nature of

ApplicationManager, the “business logic” in this case is simpler, summarizing

its functions in:

– To manage the references to the rest of the bundles.

– To work as an “stub container” to make use of the services provided by

those.

– To take care of the session data, i.e.: the user identifier.

Considering we are only go to need a single instance of the model, it also

implements a singleton pattern6.

• View: It is represented by several classes whose task consist of presenting the in-

formation to the user. This includes all the classes which represent the windows

(i.e.: MainWindow, LoginWindow, etc.) and all the necessary classes that extend

some of the graphical components (i.e.: TreeRenderer, TagListCellRenderer,

etc.)7.

The Figure 4.15 shows the most important classes that made up this bundle and

the relationships between them.

4.3.5.4 GUI design

Finally, we need to decide the composition of the graphical user interface. It was

divided into the following windows:

6This is an specific decission for this bundle, and it is not established by the MVC architectural

pattern, actually in most of the cases the model does not implement it.
7These classes are ommited in Figure 4.15 in order to make it simpler.

4.3. DESIGN 65

Figure 4.15: ApplicationManager (class diagram)

• LoginWindow: Displays a window where the user can introduce his user name

and password.

• MainWindow: Displays a window where the user can manage the local and

4.3. DESIGN 66

remote applications. It is divided into the following tabs:

– “My applications”:

∗ It allows the user to browse his applications, see the information about

them and share them in the repository.

∗ It allows the user to manage tags associated to certain application.

– “Repository”: It allows the user to browse the repository, to see informa-

tion about the applications and to retrieve them.

– “Search”: It allows the user to perform queries to look for applications in

the repository by different criteria: description, tags, type or any.

– “Search by similarity”: It allows the user to search applications by choosing

one he has in his local space.

It will also offer a menu tab with options to look up for remote help and to log

out of the system.

• ShareApplicationWindow: Displays a window where the user can customize

the parameters of the sharing process: select the communities, select the rules,

visualize their description, etc.

• RetrieveApplicationWindow: Displays a window where the user can cus-

tomize the parameters of the retrieving process: select the rules, visualize their

description, change the application description, etc.

• AddTagWindow: Displays a window where the user can tag an application and

define its visibility.

• HelpWindow: Displays a window with the help information.

The user interaction through this GUI is detailed in Section 4.5.

4.4. IMPLEMENTATION 67

4.4 Implementation

In this section we will describe some of the most important implementation details

that were undertaken during the development phase.

4.4.1 Creating and deploying a bundle

In this section we will enumerate the necessary steps to create an OSGi bundle

and deploy it in the Knopflerfish framework, assuming we have already set up the

necessary tools (Eclipse, Knopflerfish eclipse plugin, etc) 8. It is based on the tutorials

in [Hai04] and [Bar09].

4.4.1.1 Creating the project and the manifest

First of all, we need to create an OSGi project and ensure that the framework.jar

file is imported in the Java Build Path, otherwise we will not be able to access the

OSGi classes and interfaces provided by Knopflerfish.

One of the differences with respect to a common Java project is the need of defining

a manifest file which contains the description of the bundle. This manifest is used

by the framework to get information about it and to deploy it successfully. As an

example we show a simplified version of RepositoryManager‘s manifest:

Manifest-Version: 1.0

Export-Package: eu.ist.astra.rm,eu.ist.astra.rm.impl

Bundle-Vendor: IST ASTRA

Bundle-ClassPath: ., lib/lucene-2_4_1_svn.jar

Bundle-Version: 2.0.0

Bundle-Name: RepositoryManager

Bundle-Activator: eu.ist.astra.rm.impl.Activator

Bundle-Description: Repository Manager bundle which manages the sharing

process in the back-end

Bundle-SymbolicName: RepositoryManager

Import-Package: org.osgi.framework, eu.ist.astra.persistency,

eu.ist.astra.cm, eu.ist.astra.tmbe

(...)

8Details about the tools can be found in Section 4.8.

4.4. IMPLEMENTATION 68

From which we can remark the following attributes:

• Export-Packages: It informs the framework which are the classes and interfaces

offered by this bundle.

• Bundle-Classpath: It is necessary to establish all the external libraries used by

this bundle.

• Bundle-Activator: It tells the framework which class is the Activator class, it

is a similar concept to the “main” class in a normal Java application.

• Import-Package: It informs the framework about the bundles it needs to have

access to (only locals).

Appendix C contains all the manifests from all the bundles developed for this

project.

It is also necessary to create an Ant Build file to build the project, but assuming we

are using OSGi Knopflefish plugin for Eclipse, it is created automatically.

4.4.1.2 Creating an activator

The next step consists of defining the Activator class, a class that implements the

BundleActivator interface. This interface requires the implementation of two meth-

ods, start() and stop(), which are used by the framework to manage the bundle.

The start() and stop() methods receive a BundleContext object. We have to

store this object once we get it and set the reference back to null when the bundle is

stopped. That way, the Garbage Collector can do its work and free unused resources.

We have also to register the services by calling the registerService() method of

the BundleContext. It receives three parameters: the first parameter is the name of

the service interface. The second is the service implementation. The third parameter

can be used to supply additional information about the service as key/value pairs.

As an example, Figure 4.16 shows RepositoryManager’s activator code.

4.4.1.3 Running the bundles

Finally, we just need to configure the running configuration. An easy way to do it is

by creating a OSGi run configuration, where we can set the framework, configure the

system properties, etc. The most delicate part consists of defining the priorities to run

4.4. IMPLEMENTATION 69

Figure 4.16: RepositoryManager’s activator

the bundles. This can be problematic for those bundles that make use of other bundles

services when they are run for the first time9, i.e: the need of RepositoryManager

to access the database using PersistencyManager’s services when is started for the

first time.

The Figure 4.17 shows a screenshot where the bundles priorities are configured using

the OSGi Eclipse plugin. The configurations for running an ASTRA Node and the

ASTRA Backend are explained in Appendix D.

After all these steps our bundle can be successfully run and debugged.

9An alternative consists of creating a ServiceTracker object, but this is out of the scope of this

explanation.

4.4. IMPLEMENTATION 70

Figure 4.17: Bundles priorities configuration

4.4.2 Implementing MVC in a SWING application

In this section we will explain the process carried on to develop the ApplicationManager

GUI (whose design was discussed in Section 4.3.5) following a MVC architectural pat-

tern.

It is based in some of the ideas explained in [Lyb07] and [GM05].

We will summarize it describing the responsibilities of each sub-component:

• Controller: It is implemented in a singleton class, which

– Keeps track of the user interface components.

– Provides a set of methods that can be called by the events handlers.

• View: All the windows were designed graphically, using a free software plugin

for Eclipse called “Visual Swing 4 Eclipse”10. It offers also facilities to create

“empty” methods that handle the events. This makes the development faster

since we only have to:

– Set the references to the components in the controller.

10More details can be found in Section 4.8.

4.4. IMPLEMENTATION 71

– Establish a relationship between the proper event and the method to be

called in the controller.

• Model: Implements the “business logic” that, taking into account the SOA

nature of the whole project, consists of:

– Store the user session information and the references to the rest of the

bundles.

– Provides a set of methods with the proper information to be consumed by

the controller, and make use of the services offered by other bundles when

necessary.

As it was briefly discussed in Section 4.3.5, we assure a loose coupling relationship

between the subcomponents thanks to it.

It is also interesting to remark that the GUI creates background threads to perform

time-consuming tasks, by extending the SwingWorker class in order to keep the GUI

responsive [Sun08]. Concretely, threads are created for loading the tree hierarchy for

remote and local applications.

4.4.3 Search engine development

In order to accomplish the requirements related to searching capabilities (see Section

4.1) which are captured in Section 4.2.2, we decided to use the open source library

Lucene (see 3.2.7).

Lucene allowed us to provide search capabilities in a really flexible and powerful way.

In this section we will explain the steps we took to create and integrate the search

engine based on this library into RepositoryManager (see Section 4.3.2).

4.4.3.1 Creating the index

The first step consisted of deciding how the index is going to be created.

Lucene stores the index in a directory which can be of two different types: FSDirectory,

storing the contents in the contents in the file system, or RAMDirectory, storing the

contents in memory. Our search engine uses the latter, since we do not need per-

sistence of this index once RepositoryManager is stopped, and it offers a better

performance.

4.4. IMPLEMENTATION 72

Lucene defines a Document as the basic unit to be indexed. Every document is

composed of Fields, which represent all the information associated to the Document.

In our case the notion of what a Document is seems straight: an application, but

deciding what information to store about it (the Fields) requires more caution.

Lucene allows to customize the type of field by configuring how the field is going to

be stored (see Table 4.20) and how is going to be indexed (see Table 4.21).

Type of storage

Type Description

Compress Store the original field value in the index in a compressed form.

Yes Do not store the field value in the index.

No Store the original field value in the index.

Table 4.20: Types of field storage options in Lucene

Type of indexation

Type Description

No Do not index the field value.

Analyzed Index the tokens produced by running the field’s value through an Analyzer.

Not Analyzed Index the field’s value without using an Analyzer, so it can be searched.

Table 4.21: Types of field indexation in Lucene

Taking into account these field types, the Table 4.22 summarizes the type of fields

we decided to use and a brief description with the reasons.

The reason why we need to store all the fields is based on the lack of function-

alities to update the document fields in the index. Our search engine needs to take

into account the addition and removal of some fields associated to a document dy-

namically (i.e.: the tags which are added or removed), therefore we need to update

that document in the index. The only way to implement this in the current version

of Lucene is by retrieving and deleting the old version of the document, and creating

and indexing the new version of the document (using information from the old one

if it is necessary).

4.4. IMPLEMENTATION 73

Search engine - fields

Field Storage Indexation Description

App. identifier Yes Not Analyzed Necessary to return as a result of a query.

App. description Yes Analyzed Used for querying.

App. type Yes Not Analyzed Used for querying.

App. owner Yes Not Analyzed Used to filter applications which belong to

the user who is performing the query

App. tags Yes Analyzed Used for querying.

Table 4.22: Fields used by RepositoryManager’s search engine index

4.4.3.2 Querying

Once we have implemented the index, we have to create a way to perform the queries.

Lucene offers us the possibility of querying in one or in many fields instantiating

the classes QueryParser or MultiFieldQueryParser respectively. In the case of

searching by criteria, the matching is almost straight as is shown in Table 4.23.

Querying by criteria

Criterion Type of query parser Affected field(s)

By description QueryParser App. description

By tags QueryParser App. tags

By type QueryParser App. type

Any MultiFieldQueryParser App. description, tags and type

Table 4.23: Matching affected fields in querying by criteria

Thank to this mechanism, RepositoryManager offers a transparent way to per-

form the queries easily with the options selected by the user in the GUI. Therefore

we can now transform a sentence in natural language into a query in an intuitive way,

as is shown in Figure 4.18.

In the case of the search by similarity a deeper analysis was needed, but after

several tests, which will be detailed in Section 4.6, the queries are composed by the

following data of the application which is going to be compared:

• Application description.

4.4. IMPLEMENTATION 74

Figure 4.18: Querying the search engine by using the GUI

• List of public tags.

• List of community tags associated to that application (which are visible for that

user).

The query is composed in a similar way as in the one explained in Figure 4.18, and

the search is performed on the fields “description” and “tags” for every application

indexed by the search engine.

4.4.4 Application adaptation

In this section we will explain the details related to the adaptation of an application

retrieved from the repository. As it will be explained in Section 5.3, this process aims

to have assistance by inferring using ontologies in the future. The current state of

the implementation performs some automatic changes, but it still relies on the user’s

interaction.

On the other hand, the design and implementation have already taken into account

this possible expansion, so they are already connected with OntologyManager and call

its services (which for the moment return a null value) through its interface. Since

those methods are not implemented yet, ApplicationManager offers the possibility

of performing this process manually as is shown in Figure 4.19.

We can divide the current adaptation functionalities offered in two sets: some

which are performed directly by the user and some that are performed automatically

in a transparent way.

As is shown in Figure 4.20, the user can currently modify the description of the

application and select the rules before retrieving the application.

4.4. IMPLEMENTATION 75

Figure 4.19: Offering the alternative of adapting the application manually (screen-

shot)

Figure 4.20: Application adaptation through the GUI (screenshot)

The current automatic changes consist of changing the application and rules iden-

tifiers (see Figure 4.20) and changing the rules ownership internally. The first one is

almost straight, since it is only necessary to reconstruct the Strings which identify

4.4. IMPLEMENTATION 76

the application or the rule; but the internal changes in the rules require a deeper

analysis.

The way in that we can access a rule is through an XML file which describes it11.

An ASTRA XML rule has the following elements:

• RULES: The main rule tag that contains the rules. Each RULES can contain more

than one RULE.

• RULE: The tag that contains a single rule. Each rule needs a CONDITION part

and a RESULT part.

• RULE_NAME: The name of the rule.

• CONDITION: The “if part” of the rule.

• TYPE: The type of condition:

– If TYPE is AND or OR type then it is followed by CONDITION_PART.

– If the TYPE is Service, Awareness or InvokeMessage then it is followed by

NAME, OPERATOR and VALUE.

• CONDITION_PART: Defines the parts of a complex condition of an AND or OR type.

It always contains two CONDITION tags that define the two nested conditions.

• NAME: The name of the variable for the condition.

– If the TYPE is Service, the notation is <device>@<service> where the

<device> is the device that has the <service>.

– If the TYPE is Awareness, it is an intermediate state that is usually de-

scribed in the Awareness Ontology.

– If the TYPE is InvokeMessage, it is the name of the application that we

want to trigger.

• OPERATOR: The operator that describes the relationship between the NAME and

the VALUE. Can be “eq”, “neq”, “gt”, “ge”, “lt”, “le”. It can be omitted, in

which case the default value is “eq”.

11This XML file is transformed to perform inference by a subcomponent called XMLToClipsParser,

but this is out of the scope of this explanation.

4.4. IMPLEMENTATION 77

• VALUE: The value that is compared with the NAME in order to validate the

condition.

• RESULT: The “then part” of the condition. It is formed in the same way as a

condition except that no operator is needed.

The Figure 4.21 shows an example of a simple XML rule shared in the repository

by user A (Alice), and the same XML rule after applying the required changes in the

ownership once user B (Bob) has retrieved it. In general, this changes affect:

Figure 4.21: Changes in the internal ownership of the rule

• All the nodes NAME that are children of RESULT.

4.4. IMPLEMENTATION 78

• The node RULE_NAME.

A similar approach was taken to create a description of the rule based on the

XML file (as the one shown in Figure 4.20) in order to help the user to decide which

rules he wants to appropriate. The Figure 4.22 shows graphically the way in which

we create a human readable description from a rule while analyzing recursively the

tree which represents the XML rule for an application (i.e.: "bob@astra:walk").

Figure 4.22: Creating a rule description from an XML file

This was implemented using DOM (see Section 3.2.6) in the RepositoryManager,

and it is accessible for the rest of the bundles by calling the method getXMLRule()

and getRuleDescription() respectively.

4.5. USER INTERACTION 79

4.5 User interaction

In this section we will explain some of the main functionalities from the point of view

of the user by showing different screenshots. We will focus on 3 actions: “tagging

and sharing an application”, “locating an application” and “retrieving and adapting

and application from the repository”.

4.5.1 Tagging and sharing

Once the user has successfully logged in the system, he can browse the tree to see

all the information related to his applications in the tab “My applications” as is

shown in Figure 4.23. In order to distinguish quickly between a focus and a nimbus

application (see Section 1.2), the applications are presented with a different icon

(cloud for nimbus, glasses for focus) depending on the type.

Figure 4.23: Interaction with “My applications” (screenshot)

He can manage the tags associated to every application, deleting them or adding

new ones. To make the GUI more intuitive, they are represented with a different icon

depending on the scope as is shown in Figure 4.23. There is also a tool tip for every

of them, where the user can see the scope and the community which belongs to in

the case of a community tag.

4.5. USER INTERACTION 80

When the user decides to add a tag, a new window where the user can customize the

scope appears, as is shown in Figure 4.24.

Figure 4.24: Adding a tag (screenshot)

When the user desires to share an application by pressing the button “Share”,

another window is displayed. Here he can select the communities where the applica-

tion is going to be visible, the rules he wants to share, change the description, etc.

The Figure 4.25 shows an screenshot with that window.

4.5.2 Locating an application in the repository

There are three different ways to locate an application in the repository. The first

one is offered in the tab “Repository”, where the user can browse the repository and

see the main information (description, associated visible tags, etc) of the applications

which are within his scope. The Figure 4.26 shows the interaction through this tab.

The second one is by performing a query, clicking on the tab “Search”. Here the

user has to select the criteria (any, by description, by tags or by type), type a query

(in natural language, using keywords, etc.) and press the button “Go!”. Then the

results appear in the list below sorted by score, and the user can see the information

related to that results by clicking on them. The Figure 4.27 shows an screenshot of

the interaction through this tab.

4.5. USER INTERACTION 81

Figure 4.25: Sharing an application (screenshot)

The last option to locate an application is offered in the tab “Search by similar-

ity”. Here the user selects one of his applications, and similar applications sorted

by similarity are loaded on the list on the right. Selecting one of these applications,

the user can see the information related to it. The Figure 4.28 shows the interaction

through this tab.

4.5.3 Retrieving and adapting an application from the repos-

itory

Once the user has located an application by one of the several ways explained in

Section 4.5.2 and he decides to get it, a new window where the user can adapt the

application is displayed. He can change the description and choose the rules he wants

to retrieve. The Figure 4.29 shows an screenshot with the interaction through this

window after having performed a search by similarity.

4.5. USER INTERACTION 82

Figure 4.26: Browsing the repository (screenshot)

Figure 4.27: Searching an application by criteria (screenshot)

4.5. USER INTERACTION 83

Figure 4.28: Searching an application by similarity (screenshot)

Figure 4.29: Retrieving and adapting an application from the repository (screenshot)

4.6. TESTING 84

4.6 Testing

In this section we will explain shortly the testing processes we carried on for this

project. As it was explained in Section 3.1, we have followed a spiral model, therefore

we have performed testing tasks for each iteration (see Table 3.1).

4.6.1 Functionalities verification

In order to verify the code, we have performed several tests which assure it works

accordingly to its expected behavior. This was performed in a low level (after fin-

ishing every functionality) and in a high level (after every iteration or before every

demonstration). We also stressed on being sure the application responds correctly in

extreme cases like:

• Lack of local/remote applications.

• No membership in any community.

• The network is down.

• . . .

There was also a special interest in assuring all the functionalities related to the

visibility of the applications, tags, etc. work properly due to its straight relationship

with privacy protection.

As we will see in Section 4.6.4, a preliminary version (iterations 1 and 2) was

successfully tested in an users evaluation in December 2008, and another users eval-

uation is scheduled in October 2009. The current version of the project have passed

successfully all the tests we performed and we can assure it offers all the expected

functionalities described in the previous sections, so it is ready for being tested in

this new users evaluation. The feedback obtained after carrying on that process will

be very valuable to improve it in the future.

4.6.2 OS compatibility

This project has been totally developed under GNU/Linux, concretely under Ubuntu

8.04 and 8.10. All the bundles created for this project have been tested successfully

under different versions of GNU/Linux and Windows XP (see Figure 4.30) for both

subcomponents: ASTRA Node and ASTRA Backend.

4.6. TESTING 85

Figure 4.30: ApplicationManager running in GNU/Linux and Windows XP simulta-

neously

4.6.3 Search engine testing

In this section we will explain the process we carried on to evaluate the search by

similarity process. Since the origin of the data is totally artificial (it was created by

only one person) it does not intend to be a real study, but it explains a possible way

to evaluate it once data gathered from a real set of users will be available.

We created a set of 25 applications, with a description and a set of 4 tags for each

of them. All these applications were under the ownership of an user called "admin"

and shared in a community called "official". These applications were divided into

5 groups: “Sport”, “Social”, “Feelings”, “Cultural” and “Location”. We assumed

an application can only belong to one of this groups to make the measuring process

simpler, but this introduces an error, since the way an application is categorized is

subjective and not exclusive. For example, an application admin@astra:concert

with description “going to a live music concert” was classified into the group “Cul-

tural”, but for other people could be in the group “Social” or even in both. This

will be taken into account when evaluating the results, since we will prefer to have a

bigger recall even at the expense of loosing precision. The raw data can be found in

the Tables B.1, B.2, B.3, B.4 and B.5 in Appendix B.

4.6. TESTING 86

We created a new user afterwards that owns 5 applications which are similar (in

description and tags) to one of each of the groups. This will help us to evaluate if we

chose properly the fields to create the query and the fields to perform the query in

(see Section 4.4.3). As we explained in the previously referred section, the results are

afterwards sorted by score (see Appendix A for more details in scoring in Lucene).

The measures we took were:

• RD : Total number of retrieved documents.

• RDR: Relevant documents retrieved.

• ERD : Total number of existing relevant documents.

With these variables we can calculate the precision and recall percentage:

precision = (RDR/RD) ∗ 100

recall = (RDR/ERD) ∗ 100

Before taking the measures and perform the calculations, we defined a small set

of testing goals:

• The application with the biggest score should be always the one it was based

on. This acts as a “control measure” for the scoring.

• We should have a recall of at least 80%.

• We should have a precision of at least 40%.

The reason why we stressed on the recall values at the expense of the precision is

because of the nature of the categorization, as it was explained before.

The measures and calculations for each application can be found in Tables B.6,

B.7, B.8, B.9 and B.10 in Appendix B.

Table 4.24 summarizes the calculations by groups and on average.

From this simple evaluation, we can remark:

• It satisfies the preliminary testing goals, with a 96% average in recall and 52.54%

average in precision. It also satisfies the “control group” goal in all the cases.

4.6. TESTING 87

Group RD RDR ERD Precision Recall

Sport 9 5 5 55.56% 100%

Social 10 5 5 50% 100%

Feelings 10 5 5 50% 100%

Cultural 7 4 5 57.14% 80%

Location 10 5 5 50% 100%

Average 9.2 5 5 52.54% 96%

Table 4.24: Summary of the results for search by similarity evaluation

• In most of the cases, the 5 first results belong to the group we were expecting

(see Appendix B). This could be useful to establish a threshold in case the

precision will decrease too much in the future.

• When there are false positives, in general all of them belong to no more than

one or two of the categories (see for instance Table B.8). This can be explained

because of the rigid way we have tagged and categorized the applications in

contrast with the intrinsic non-exclusive nature of the applications categoriza-

tion.

It is important to remark that the data was totally artificial, therefore the aim of

this small evaluation was just assuring the design decisions point to the right way,

and to establish a possible way of measuring in the future.

4.6.4 Users evaluation

A preliminary users evaluation after iterations 1 and 2 (see Table 3.1) was performed

at NTNU in Trondheim (Norway) on the 13th of December 2008. There were 8

participants, all of them exchange students since those represent one of the main

scenarios in ASTRA. A deep analysis is beyond the scope of this document (detailed

information can be found in [DC09]), but we will summarize the most important

ideas and impressions given by the users, and the way we have used this feedback for

developing the current version of the project:

• Participants were positive about the idea of sharing and getting applications.

4.6. TESTING 88

• The notion of community had a good reception, and they evaluated positively

the visibility in terms of community. This feedback has been taken into account

in iterations 3 and 4 (i.e.: adding support to browse by communities in local

and remote applications).

• The search functionalities needed to be extended. This is one of the main

features added in iteration 3 with the integration of a search engine into the

repository.

• Users evaluate very positively the possibility of having public and community

tags. Users also pointed the necessity of removing them, which is supported in

the current version.

• Users evaluate positively the introduction of ontologies. For instance this can be

used to support a better categorization. This issue is part of the future work (see

Section 5.3), and the bundles developed for this project are already integrated

with OntologyManager’s interface, so they will work once that functionalities

are implemented in that bundle.

• Some privacy issues arise, regarding especially the need of removing rules. For

instance, an application may have a rule which provides information about our

location that we do not want to share. This has been addressed in the current

version, in which we provide mechanisms to visualize and adapt the application

(i.e.: discard a rule after visualizing its auto-generated description), so the users

can handle its privacy.

• Implementing a search by similarity from a recommended application was pointed

as an interesting option. This is addressed in the current version.

A new users evaluation at NTNU including the work performed during iterations

3 and 4 is scheduled in October 2009, once some other ASTRA components will be

developed, so they can also be tested in the same evaluation.

4.7. COORDINATION 89

4.7 Coordination

In this section we will discuss shortly the mechanisms we used in order to coordinate

with the rest of teams during the realization of this project. This is specially interes-

ting taking into account the big amount of partners from several countries which are

part of the ASTRA project (see Section 1.1).

The employed coordination mechanisms are listed and described briefly below:

• F2F (Face To Face): I have assisted to F2F meetings with members of NTNU

and Telenor teams during my stay in Trondheim (Norway) (see Section 5.2 to

see time references). This is obviously the richest communication mechanism,

and it was specially interesting for the requirements elicitation processes. This

has also been the main coordination mechanism with my supervisor at URJC

during my stay in Madrid (Spain).

• Teleconferences: I have had weekly teleconference meetings with NTNU, Te-

lenor and CTI members. This has been a very useful mechanism to coordinate

the work in team, to discuss the state of the project, to share ideas, etc.

• Wiki: We have used a wiki website (http://www.astra-project.net/wiki) to co-

ordinate the bundles development process. This has been a very useful tool to

be aware about other teams bundles and to produce a good documentation.

• Subversion: The project code is hosted in a SVN server at NTNU

(http://basar.idi.ntnu.no/svn/astra/). This has been a really useful tool to

coordinate the development process, since it allows us to avoid and resolve

possible code conflicts, and to have revisions for every code updating.

• E-mail: This supposes the main asynchronous communication mechanism, and

it has been very useful to coordinate with all the members of the team. For

instance, it has been used to report bugs.

4.8. TOOLS 90

4.8 Tools

In this section we will describe briefly the main tools employed for the achievement

of this project. There have been a personal interest in the use of free or open-source

software due to all the advantages that it offers to us. Therefore, all the tools we

have employed (except Jude, which was used under a freeware license) have a license

of these characteristics.

The list below, summarizes the most important tools employed for this project:

• Eclipse 3.4.1 as IDE, including the following plugins (all of them free or open

source software):

– Knopflerfish OSGi IDE, version 1.0.16. Plugin to help in OSGi bundles

development (see Section 3.2.3.1).

– Subclipse, version 1.4.8. Provides support for Subversion.

– Visual Swing, version 0.9. Provides visual GUI design tools.

– Textlipse, version 1.3.0. Provides LATEX support.

• Knopflerfish, version 2.3. Open source OSGi service platform.

• MySQL, version 5.1. Open source RDBMS (see Section 3.2.8).

• PHPMyAdmin, version 3.2. Open source tool to handle MySQL administration

through a web interface.

• Apache, version 2.2. Free software HTTP server.

• Dia, version 0.96. Free software program to draw diagrams.

• Jude Community, version 5.4.1. Freeware program for UML modeling.

• VirtualBox, version 3.0.2. Open source virtualizer for x86 hardware.

• GIMP, version 2.6. Free software for image manipulation.

Chapter 5

Conclusions

This chapter concludes the report discussing briefly the fulfillment of the objectives

and discussing my personal contribution to ASTRA. Some suggestions about future

work are also included, as well as a personal evaluation.

5.1 Achieved goals

In this report we have detailed the process carried on to develop and integrate a set of

bundles to manage awareness applications into ASTRA, including functionalities for

sharing, tagging, locating, appropriating and adapting the applications. A new GUI

to access this functionalities has also been developed, demonstrating the flexibility of

the ASTRA SOA (see Section 3.2.1.2). All the work has been carried on stressing its

extensibility, so new functionalities can be easily added in the future as we will see

in Section 5.3. Therefore, we can conclude we have successfully fulfilled all the goals

stated in Chapter 2.

5.2 Contribution

In this section we will discuss briefly my contribution to ASTRA, including also time

references.

I started my contribution to ASTRA as part of my summer job for the IDI (Insti-

tutt for Datateknikk og Informasjonsvitenskap) at NTNU during the summer of 2008

(July-September). In this period I participated in the analysis, design, implementa-

tion and testing of the first version of RepositoryManager, TagManagerBackend and

91

5.3. FUTURE WORK 92

TagManagerNode. During this term, I was working in close cooperation with another

member of the NTNU ASTRA team, and we followed a extreme-programming model

(see Section 3.1). The work performed during this period made up iterations 1 and

2 (see Table 3.1).

I resumed my collaboration with ASTRA project in February 2009. During this

period I worked in the analysis, design, implementation and testing of

ApplicationManager and in the extension of the functionalities of other bundles:

including search capabilities in RepositoryManager and the addition of new func-

tionalities in TagManagerBackend and TagManagerNode, etc. This made up iterations

3 and 4 (see Table 3.1). Most of the work was developed during my stay in Madrid,

and I coordinated using the mechanisms explained in Section 4.7. I also had the

opportunity to come back to Norway to work in ASTRA during one month and a

half during the summer, which was extremely useful to elicit and implement the last

requirements and conclude successfully the project.

5.3 Future work

In this section we present a set of possible enhancements for this project:

• The parameters for the searching by similarity process can be adjusted to in-

crease its recall and precision once an evaluation process similar to the one

explained in Section 4.6.3 with real user data is carried on.

• The use of ontologies for helping in the application adaptation process can be

included once the implementation of the necessary methods in the

OntologyManager is finished. ApplicationManager is already prepared to

make use of its services.

• An extension of the GUI could be performed, adding the possibility of publish-

ing applications, join communities, rules edition, etc.

• New browsing methods (by owner, by tags, etc.) could be developed, to allow

the user localize applications in new ways.

5.4. PERSONAL EVALUATION 93

5.4 Personal evaluation

My work for ASTRA has been one of the most enriching experiences of my career. I

have had the opportunity to work in a real researching project and to collaborate with

teams from several countries. It has also been really enriching in technological terms,

since I have increased my knowledge about all the technologies discussed in Chapter

3. It has been really important in personal terms as well, since this experience allowed

me to discover my passion for researching. Therefore, I will always be grateful for

having had the opportunity to be part of this project.

Appendix A

Document scoring in Lucene

In this section we will explain the scoring process employed in our search engine.

We use the class org.apache.lucene.search.DefaultSimilarity provided by the

Lucene library. This explanation is based on [Apa08b] and [Apa08a].

Lucene scoring uses a combination of the Vector Space Model (VSM) of Informa-

tion Retrieval and the Boolean model to determine how relevant a given Document

is to a User’s query. In general, the idea behind the VSM is the more times a query

term appears in a document relative to the number of times the term appears in all

the documents in the collection, the more relevant that document is to the query. It

uses the Boolean model to first narrow down the documents that need to be scored

based on the use of boolean logic in the Query specification. Lucene also adds some

capabilities and refinements onto this model to support boolean and fuzzy searching,

but it essentially remains a VSM based system at the heart.

The score for a query q in a document d is computed as follows:

score(q, d) = coord(q, d)∗queryNorm(q)∗
∑

t in q

(tf(t in d)∗idf(t)2∗t.getBoost()∗norm(t, d))

where

• tf(t in d) correlates to the term’s frequency, defined as the number of times

term t appears in the currently scored document d. Documents that have more

occurrences of a given term receive a higher score. The default computation for

tf(t in d) in DefaultSimilarity is:

tf(t in d) = frequency1/2

94

95

• idf(t) stands for Inverse Document Frequency. This value correlates to the

inverse of docFreq (the number of documents in which the term t appears).

This means rarer terms give higher contribution to the total score. The default

computation for idf(t) in DefaultSimilarity is:

idf(t) = 1 + log(numdocs/(docFreq + 1))

• coord(q,d) is a score factor based on how many of the query terms are found

in the specified document. Typically, a document that contains more of the

query’s terms will receive a higher score than another document with fewer

query terms. This is a search time factor computed at search time.

• queryNorm(q) is a normalizing factor used to make scores between queries com-

parable. This factor does not affect document ranking (since all ranked doc-

uments are multiplied by the same factor), but rather just attempts to make

scores from different queries (or even different indexes) comparable. This is

a search time factor computed at search time. The default computation in

DefaultSimilarity is:

queryNorm(q) = 1/sumOfSquareWeights1/2

The sum of squared weights (of the query terms) is computed by the query

Weight object. For example, a boolean query computes this value as:

sumOfSquareWeights = q.getBoost()2 ∗
∑

t in q

((idf(t) ∗ t.getBoost())2)

• t.getBoost() is a search time boost of term t in the query q as specified in the

query text.

• norm(t,d) encapsulates a few (indexing time) boost and length factors:

– Document boost, set by calling doc.setBoost() before adding the docu-

ment to the index.

– Field boost, set by calling field.setBoost() before adding the field to a

document.

96

– lengthNorm(field), computed when the document is added to the index in

accordance with the number of tokens of this field in the document, so

that shorter fields contribute more to the score. LengthNorm is computed

by the Similarity class in effect at indexing.

When a document is added to the index, all the above factors are multiplied.

If the document has multiple fields with the same name, all their boosts are

multiplied together:

norm(t, d) = doc.getBoost()∗lengthNorm(field)∗
∏

field in d named as t

(f.getBoost())

Appendix B

Search engine - Testing data

In this appendix we detail the data we gathered to perform the evaluation of the

search by similarity offered by the search engine. The analysis of this data can be

found in Section 4.6.3.

Tables B.1, B.2, B.3, B.4 and B.5 shows the initial set of raw data from which we

began our analysis for each group.

Sport

Application identifier Application description Tags

admin@astra:go jogging go jogging to the forest sport, exercise, run, fit

admin@astra:go to the gym go to the gym to train fit, health, sport, muscle

admin@astra:play basketball match play an amateur basketball match health, ball, sport, amateur

admin@astra:play football play a football match ball, sport, goalkeeper, offside

admin@astra:play handball play a handball match sport, fun, ball, amateur

Table B.1: Search by similarity evaluation - raw data (sport)

Social

Application identifier Application description Tags

admin@astra:beer going out to have some beers beer, fun, social, friends

admin@astra:tapas go to a Spanish restaurant to have some tapas restaurant, food, spain, social

admin@astra:coffee going to have a coffee break, social, relax, talk

admin@astra:romantic dinner going to an Italian restaurant to have a romantic dinner restaurant, meal, food, social

admin@astra:dance going out to dance in some disco party, friends, beer, fun

Table B.2: Search by similarity evaluation - raw data (social)

Tables B.6, B.7, B.8, B.9 and B.10 shows the results returned by the search engine

ordered by scored (as they are presented to the user). The application we compare

to was based on similar information to the one indicated in bold (“control measure”,

see Section 4.6.3). Applications in italic are the ones which belong to the same group

97

98

Feelings

Application identifier Application description Tags

admin@astra:happy I am really happy feeling, nice, love, great

admin@astra:hating you I think of you, and I am really angry angry, hate, feelings, furious

admin@astra:missing you I am missing you so much love, nostalgy, feeling, lovely

admin@astra:sad I feel sad lonely, feeling, terrible, nostalgy

admin@astra:thinking of you I miss you and I am thinking of you love, nostalgy, feeling, hug

Table B.3: Search by similarity evaluation - raw data (feelings)

Cultural

Application identifier Application description Tags

admin@astra:go sightseeing go sightseeing in our city tourism, cultural, guide, museum

admin@astra:museum go to a museum paintings, history, cultural, tourism

admin@astra:photography exposition going to that new photography exposition pics, cultural, sightseeing, camera

admin@astra:concert go to a live music concert music, fun, social, rock

admin@astra:cinema watch a movie in the cinema movies, social, film, fun

Table B.4: Search by similarity evaluation - raw data (cultural)

Location

Application identifier Application description Tags

admin@astra:girlfriend home I am at my girlfriend home busy, home, place, gf

admin@astra:home I am at home place, home, location, safe

admin@astra:my parents I am at my parents home family, mother, father, place

admin@astra:office I am at work, in my office work, job, place, office

admin@astra:village I am going to be in my mother village parents, mother, place, rustic

Table B.5: Search by similarity evaluation - raw data (location)

we are testing (true positives). An analysis of these results can be found in Table

4.24.

Sports

Application returned Field Score

admin@astra:play handball Sport 2.18

admin@astra:play basketball match Sport 1.4

admin@astra:play football Sport 0.64

admin@astra:beer Social 0.03

admin@astra:cinema Cultural 0.03

admin@astra:concert Cultural 0.03

admin@astra:dance Social 0.03

admin@astra:go jogging Sport 0.03

admin@astra:go to the gym Sport 0.03

Table B.6: Search by similarity evaluation - results for group “Sport”

99

Social

Application returned Field Score

admin@astra:beer Social 2.21

admin@astra:dance Social 0.99

admin@astra:coffee Social 0.19

admin@astra:tapas Social 0.18

admin@astra:romantic dinner Social 0.15

admin@astra:cinema Cultural 0.08

admin@astra:concert Cultural 0.08

admin@astra:play handball Sport 0.02

admin@astra:photography exposition Cultural 0.02

admin@astra:village Location 0.01

Table B.7: Search by similarity evaluation - results for group “Social”

Feelings

Application returned Field Score

admin@astra:thinking of you Feelings 2.4

admin@astra:missing you Feelings 0.92

admin@astra:happy Feelings 0.34

admin@astra:hating you Feelings 0.3

admin@astra:sad Feelings 0.23

admin@astra:home Location 0.08

admin@astra:girlfriend home Location 0.07

admin@astra:my parents Location 0.07

admin@astra:office Location 0.07

admin@astra:village Location 0.06

Table B.8: Search by similarity evaluation - results for group “Feelings”

Cultural

Application returned Field Score

admin@astra:museum Cultural 1.68

admin@astra:go sightseeing Cultural 0.91

admin@astra:photography exposition Cultural 0.05

admin@astra:concert Cultural 0.03

admin@astra:go jogging Sport 0.03

admin@astra:go to the gym Sport 0.03

admin@astra:tapas Social 0.02

Table B.9: Search by similarity evaluation - results for group “Cultural”

Location

Application returned Field Score

admin@astra:home Location 2.88

admin@astra:girlfriend home Location 1.28

admin@astra:my parents Location 0.73

admin@astra:office Location 0.2

admin@astra:village Location 0.19

admin@astra:happy Feelings 0.08

admin@astra:hating you Feelings 0.07

admin@astra:thinking of you Feelings 0.07

admin@astra:missing you Feelings 0.06

admin@astra:sad Feelings 0.02

Table B.10: Search by similarity evaluation - results for group “Location”

Appendix C

Bundles manifests

In this appendix we list the manifests of the bundles developed for this project. The

meaning of the most relevant attributes is explained in Section 4.4.1.

C.1 RepositoryManager’s manifest

Manifest-Version: 1.0

Export-Package: eu.ist.astra.rm,eu.ist.astra.rm.impl

Bundle-Vendor: IST ASTRA

Bundle-ClassPath: ., lib/lucene-2_4_1_svn.jar

Bundle-Version: 2.0.0

Bundle-Name: RepositoryManager

Bundle-Activator: eu.ist.astra.rm.impl.Activator

Bundle-Description: Repository Manager bundle which manages the sharing

process in the back-end

Import-Package:

org.osgi.framework,

eu.ist.astra.persistency,

eu.ist.astra.cm, eu.ist.astra.tmbe,

eu.ist.astra.em, eu.ist.astra.em.events,

javax.xml.parsers;resolution:=optional,

javax.xml.transform;resolution:=optional,

javax.xml.transform.dom;resolution:=optional,

100

C.2. TAGMANAGERBACKEND’S MANIFEST 101

javax.xml.transform.stream;resolution:=optional,

org.w3c.dom;resolution:=optional

Bundle-SymbolicName: RepositoryManager

C.2 TagManagerBackEnd’s manifest

Manifest-Version: 1.0

Export-Package: eu.ist.astra.tmbe

Bundle-Vendor: Astra

Bundle-ClassPath: .

Bundle-Version: 2.0.0

Bundle-Name: TagManagerBackEnd

Bundle-Activator: eu.ist.astra.tmbe.impl.Activator

Bundle-SymbolicName: TagManagerBackEnd

Import-Package:

org.osgi.framework,

eu.ist.astra.persistency,

eu.ist.astra.cm, eu.ist.astra.em,

eu.ist.astra.em.events

Bundle-ManifestVersion: 2

C.3 TagManagerNode’s manifest

Manifest-Version: 1.0

Export-Package: eu.ist.astra.tmn

Bundle-Vendor: Astra

Bundle-ClassPath: .

Bundle-Version: 2.0.0

C.4. APPLICATIONMANAGER’S MANIFEST 102

Bundle-Name: TagManagerNode

Bundle-Activator: eu.ist.astra.tmn.impl.Activator

Bundle-SymbolicName: TagManagerNode

Import-Package:

org.osgi.framework,

eu.ist.astra.persistency

C.4 ApplicationManager’s manifest

Manifest-Version: 1.0

Bundle-Vendor: ASTRA

Bundle-ClassPath: ., lib/grouplayout.jar

Bundle-Version: 2.0.0

Bundle-Name: ApplicationManager

Bundle-Activator: eu.ist.astra.am.Activator

Bundle-SymbolicName: ApplicationManager

Import-Package:

org.osgi.framework,

eu.ist.astra.aam, eu.ist.astra.rfm,

eu.ist.astra.rfm.proxies, eu.ist.astra.ontologymanager.api,

eu.ist.astra.tmn,

eu.ist.astra.awarenessmanager,

javax.swing;resolution:=optional,

javax.swing.event;resolution:=optional,

javax.swing.table;resolution:=optional,

javax.swing.text;resolution:=optional,

javax.swing.text.html;resolution:=optional,

javax.swing.tree;resolution:=optional

Appendix D

OSGi bundles configuration

In this appendix we present the configuration files (xinit.args) necessary to run the

bundles in the proper order for the Backend and the Nodes. These configuration files

are read by the framework on the startup process, so it can decides which bundles to

start and in which order.

D.1 OSGi - Backend configuration

#

Generated from template.xargs Knopflerfish release 2.0.1

drozas: the latest information about the configuration can

be found at: http://www.astra-project.net/wiki/ConfigurationForBackEnd

#

load common properties

-xargs props.xargs

Prefix for searching for bundle URLs from console or command line

-Dorg.knopflerfish.gosg.jars=file:ASTRA/

#-Deu.ist.astra.cm.proxy.endpoint=

http://localhost:8080/axis/services/CommunityManager

-init

#extra Initializations for ASTRA

103

D.2. OSGI - NODE CONFIGURATION 104

-istart jsdk/jsdk-2.2.jar

-istart log/log_all-2.0.1.jar

-istart cm/cm_all-2.0.0.jar

-istart commons-logging/commons-logging_all-2.0.0.jar

-istart http/http_all-2.0.0.jar

-istart axis-osgi/axis-osgi_all-0.1.0.jar

-istart RemoteFrameworkManager-2.0.0.jar

-istart EventsManager-2.0.0.jar

-istart PersistencyManager-2.0.0.jar

-istart CommunityManagerAPI-2.0.0.jar

-istart UserManager-2.0.0.jar

-istart CommunityManager-2.0.0.jar

-istart AwarenessApplicationManagerBackend-2.0.0.jar

-istart TagManagerBackEnd-2.0.0.jar

-istart RepositoryManager-2.0.0.jar

-launch

D.2 OSGi - Node configuration

#

Generated from template.xargs

Knopflerfish release 2.0.1

#

drozas: the latest information about the configuration can

#be found at: http://www.astra-project.net/wiki/ConfigurationForNode

load common properties

-xargs props.xargs

Prefix for searching for bundle URLs from console or command line

-Dorg.knopflerfish.gosg.jars=file:ASTRA/

#You may want to change this parameter to refer to another server

-Deu.ist.astra.cm.proxy.endpoint=

http://localhost:8080/axis/services/CommunityManager

D.2. OSGI - NODE CONFIGURATION 105

-Deu.ist.astra.BackEndAddress=http://localhost:8080/

-Deu.ist.astra.default.user=john@astra

-init

#extra Initializations for ASTRA

-istart jsdk/jsdk-2.2.jar

-istart cm/cm_all-2.0.0.jar

-istart commons-logging/commons-logging_all-2.0.0.jar

-istart http/http_all-2.0.0.jar

-istart axis-osgi/axis-osgi_all-0.1.0.jar

-istart jena_bundle.jar

-istart RemoteFrameworkManager-2.0.0.jar

-istart EventsManager-2.0.0.jar

-istart OntologyManager-2.0.0.jar

-istart PersistencyManager-2.0.0.jar

-istart CommunityManagerAPI-2.0.0.jar

-istart CommunityManagerProxy-2.0.0.jar

-istart UserManagerProxy-2.0.0.jar

-istart UserManagerAPI-2.0.0.jar

-istart AwarenessManager-2.0.0.jar

-istart AwarenessApplicationManager-2.0.0.jar

-istart ServiceProxyManager-2.0.0.jar

-istart UPnPServiceProxy-2.0.0.jar

-istart ContextManager-2.0.0.jar

-istart TagManagerNode-2.0.0.jar

#-istart ASTRATester-2.0.0.jar

-istart ApplicationManager-2.0.0.jar

-launch

Appendix E

GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright c© 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.

http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this license

document, but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other functional

and useful document “free” in the sense of freedom: to assure everyone the effective

freedom to copy and redistribute it, with or without modifying it, either commer-

cially or noncommercially. Secondarily, this License preserves for the author and

publisher a way to get credit for their work, while not being considered responsible

for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the

document must themselves be free in the same sense. It complements the GNU

General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software,

because free software needs free documentation: a free program should come with

manuals providing the same freedoms that the software does. But this License is

not limited to software manuals; it can be used for any textual work, regardless of

subject matter or whether it is published as a printed book. We recommend this

License principally for works whose purpose is instruction or reference.

106

107

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains

a notice placed by the copyright holder saying it can be distributed under the terms

of this License. Such a notice grants a world-wide, royalty-free license, unlimited in

duration, to use that work under the conditions stated herein. The “Document”,

below, refers to any such manual or work. Any member of the public is a licensee,

and is addressed as “you”. You accept the license if you copy, modify or distribute

the work in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Docu-

ment or a portion of it, either copied verbatim, or with modifications and/or trans-

lated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the

Document that deals exclusively with the relationship of the publishers or authors of

the Document to the Document’s overall subject (or to related matters) and contains

nothing that could fall directly within that overall subject. (Thus, if the Document

is in part a textbook of mathematics, a Secondary Section may not explain any

mathematics.) The relationship could be a matter of historical connection with the

subject or with related matters, or of legal, commercial, philosophical, ethical or

political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are desig-

nated, as being those of Invariant Sections, in the notice that says that the Document

is released under this License. If a section does not fit the above definition of Sec-

ondary then it is not allowed to be designated as Invariant. The Document may

contain zero Invariant Sections. If the Document does not identify any Invariant

Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-

Cover Texts or Back-Cover Texts, in the notice that says that the Document is

released under this License. A Front-Cover Text may be at most 5 words, and a

Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, rep-

resented in a format whose specification is available to the general public, that is

suitable for revising the document straightforwardly with generic text editors or (for

images composed of pixels) generic paint programs or (for drawings) some widely

available drawing editor, and that is suitable for input to text formatters or for auto-

108

matic translation to a variety of formats suitable for input to text formatters. A copy

made in an otherwise Transparent file format whose markup, or absence of markup,

has been arranged to thwart or discourage subsequent modification by readers is not

Transparent. An image format is not Transparent if used for any substantial amount

of text. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII with-

out markup, Texinfo input format, LaTeX input format, SGML or XML using a

publicly available DTD, and standard-conforming simple HTML, PostScript or PDF

designed for human modification. Examples of transparent image formats include

PNG, XCF and JPG. Opaque formats include proprietary formats that can be

read and edited only by proprietary word processors, SGML or XML for which the

DTD and/or processing tools are not generally available, and the machine-generated

HTML, PostScript or PDF produced by some word processors for output purposes

only.

The “Title Page” means, for a printed book, the title page itself, plus such

following pages as are needed to hold, legibly, the material this License requires to

appear in the title page. For works in formats which do not have any title page as

such, “Title Page” means the text near the most prominent appearance of the work’s

title, preceding the beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Doc-

ument to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title

either is precisely XYZ or contains XYZ in parentheses following text that trans-

lates XYZ in another language. (Here XYZ stands for a specific section name men-

tioned below, such as “Acknowledgements”, “Dedications”, “Endorsements”,

or “History”.) To “Preserve the Title” of such a section when you modify the

Document means that it remains a section “Entitled XYZ” according to this defini-

tion.

The Document may include Warranty Disclaimers next to the notice which states

that this License applies to the Document. These Warranty Disclaimers are con-

sidered to be included by reference in this License, but only as regards disclaiming

warranties: any other implication that these Warranty Disclaimers may have is void

and has no effect on the meaning of this License.

109

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially

or noncommercially, provided that this License, the copyright notices, and the license

notice saying this License applies to the Document are reproduced in all copies, and

that you add no other conditions whatsoever to those of this License. You may not

use technical measures to obstruct or control the reading or further copying of the

copies you make or distribute. However, you may accept compensation in exchange

for copies. If you distribute a large enough number of copies you must also follow the

conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may

publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed

covers) of the Document, numbering more than 100, and the Document’s license

notice requires Cover Texts, you must enclose the copies in covers that carry, clearly

and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-

Cover Texts on the back cover. Both covers must also clearly and legibly identify

you as the publisher of these copies. The front cover must present the full title with

all words of the title equally prominent and visible. You may add other material on

the covers in addition. Copying with changes limited to the covers, as long as they

preserve the title of the Document and satisfy these conditions, can be treated as

verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should

put the first ones listed (as many as fit reasonably) on the actual cover, and continue

the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than

100, you must either include a machine-readable Transparent copy along with each

Opaque copy, or state in or with each Opaque copy a computer-network location

from which the general network-using public has access to download using public-

standard network protocols a complete Transparent copy of the Document, free of

added material. If you use the latter option, you must take reasonably prudent

steps, when you begin distribution of Opaque copies in quantity, to ensure that this

110

Transparent copy will remain thus accessible at the stated location until at least one

year after the last time you distribute an Opaque copy (directly or through your

agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document

well before redistributing any large number of copies, to give them a chance to provide

you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the con-

ditions of sections 2 and 3 above, provided that you release the Modified Version

under precisely this License, with the Modified Version filling the role of the Docu-

ment, thus licensing distribution and modification of the Modified Version to whoever

possesses a copy of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the

Document, and from those of previous versions (which should, if there were any,

be listed in the History section of the Document). You may use the same title

as a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible

for authorship of the modifications in the Modified Version, together with at

least five of the principal authors of the Document (all of its principal authors,

if it has fewer than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as

the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the

other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the

public permission to use the Modified Version under the terms of this License,

in the form shown in the Addendum below.

111

G. Preserve in that license notice the full lists of Invariant Sections and required

Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an

item stating at least the title, year, new authors, and publisher of the Modified

Version as given on the Title Page. If there is no section Entitled “History” in

the Document, create one stating the title, year, authors, and publisher of the

Document as given on its Title Page, then add an item describing the Modified

Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to

a Transparent copy of the Document, and likewise the network locations given

in the Document for previous versions it was based on. These may be placed

in the “History” section. You may omit a network location for a work that

was published at least four years before the Document itself, or if the original

publisher of the version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the

Title of the section, and preserve in the section all the substance and tone of

each of the contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and

in their titles. Section numbers or the equivalent are not considered part of the

section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be in-

cluded in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict

in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that

qualify as Secondary Sections and contain no material copied from the Document,

you may at your option designate some or all of these sections as invariant. To do

112

this, add their titles to the list of Invariant Sections in the Modified Version’s license

notice. These titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but

endorsements of your Modified Version by various parties—for example, statements of

peer review or that the text has been approved by an organization as the authoritative

definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage

of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in

the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover

Text may be added by (or through arrangements made by) any one entity. If the

Document already includes a cover text for the same cover, previously added by you

or by arrangement made by the same entity you are acting on behalf of, you may

not add another; but you may replace the old one, on explicit permission from the

previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give

permission to use their names for publicity for or to assert or imply endorsement of

any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this Li-

cense, under the terms defined in section 4 above for modified versions, provided that

you include in the combination all of the Invariant Sections of all of the original doc-

uments, unmodified, and list them all as Invariant Sections of your combined work

in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple

identical Invariant Sections may be replaced with a single copy. If there are multiple

Invariant Sections with the same name but different contents, make the title of each

such section unique by adding at the end of it, in parentheses, the name of the original

author or publisher of that section if known, or else a unique number. Make the same

adjustment to the section titles in the list of Invariant Sections in the license notice

of the combined work.

In the combination, you must combine any sections Entitled “History” in the

various original documents, forming one section Entitled “History”; likewise combine

113

any sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”.

You must delete all sections Entitled “Endorsements”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents

released under this License, and replace the individual copies of this License in the

various documents with a single copy that is included in the collection, provided that

you follow the rules of this License for verbatim copying of each of the documents in

all other respects.

You may extract a single document from such a collection, and distribute it in-

dividually under this License, provided you insert a copy of this License into the

extracted document, and follow this License in all other respects regarding verbatim

copying of that document.

7. AGGREGATION WITH INDEPENDENT

WORKS

A compilation of the Document or its derivatives with other separate and inde-

pendent documents or works, in or on a volume of a storage or distribution medium,

is called an “aggregate” if the copyright resulting from the compilation is not used

to limit the legal rights of the compilation’s users beyond what the individual works

permit. When the Document is included in an aggregate, this License does not apply

to the other works in the aggregate which are not themselves derivative works of the

Document.

If the Cover Text requirement of section 3 is applicable to these copies of the

Document, then if the Document is less than one half of the entire aggregate, the

Document’s Cover Texts may be placed on covers that bracket the Document within

the aggregate, or the electronic equivalent of covers if the Document is in electronic

form. Otherwise they must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute transla-

tions of the Document under the terms of section 4. Replacing Invariant Sections with

114

translations requires special permission from their copyright holders, but you may in-

clude translations of some or all Invariant Sections in addition to the original versions

of these Invariant Sections. You may include a translation of this License, and all the

license notices in the Document, and any Warranty Disclaimers, provided that you

also include the original English version of this License and the original versions of

those notices and disclaimers. In case of a disagreement between the translation and

the original version of this License or a notice or disclaimer, the original version will

prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or

“History”, the requirement (section 4) to Preserve its Title (section 1) will typically

require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as

expressly provided under this License. Any attempt otherwise to copy, modify, sub-

license, or distribute it is void, and will automatically terminate your rights under

this License.

However, if you cease all violation of this License, then your license from a par-

ticular copyright holder is reinstated (a) provisionally, unless and until the copyright

holder explicitly and finally terminates your license, and (b) permanently, if the copy-

right holder fails to notify you of the violation by some reasonable means prior to 60

days after the cessation.

Moreover, your license from a particular copyright holder is reinstated perma-

nently if the copyright holder notifies you of the violation by some reasonable means,

this is the first time you have received notice of violation of this License (for any

work) from that copyright holder, and you cure the violation prior to 30 days after

your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of

parties who have received copies or rights from you under this License. If your rights

have been terminated and not permanently reinstated, receipt of a copy of some or

all of the same material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

115

The Free Software Foundation may publish new, revised versions of the GNU Free

Documentation License from time to time. Such new versions will be similar in spirit

to the present version, but may differ in detail to address new problems or concerns.

See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Docu-

ment specifies that a particular numbered version of this License “or any later version”

applies to it, you have the option of following the terms and conditions either of that

specified version or of any later version that has been published (not as a draft) by

the Free Software Foundation. If the Document does not specify a version number of

this License, you may choose any version ever published (not as a draft) by the Free

Software Foundation. If the Document specifies that a proxy can decide which future

versions of this License can be used, that proxy’s public statement of acceptance of

a version permanently authorizes you to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World

Wide Web server that publishes copyrightable works and also provides prominent

facilities for anybody to edit those works. A public wiki that anybody can edit is

an example of such a server. A “Massive Multiauthor Collaboration” (or “MMC”)

contained in the site means any set of copyrightable works thus published on the

MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license

published by Creative Commons Corporation, a not-for-profit corporation with a

principal place of business in San Francisco, California, as well as future copyleft

versions of that license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as

part of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all

works that were first published under this License somewhere other than this MMC,

and subsequently incorporated in whole or in part into the MMC, (1) had no cover

texts or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under

CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC

is eligible for relicensing.

Bibliography

[Apa08a] Apache Lucene Team. Formula for scoring in lucene.

http://lucene.apache.org/java/240/api/org/apache/lucene/search/Similarity.html,

2008.

[Apa08b] Apache Lucene Team. Understanding scoring in lucene.

http://lucene.apache.org/java/240/scoring.html, 2008.

[Bar09] Bartlett, Neil. OSGi in practice. CC-E-books, 2009.

[Bo01] Beedle, Mike Beck, Kevin and others. The agile manifesto.

http://agilemanifesto.org/, 2001.

[BP09] Calemis, Ioannis Berg, Erik and Pérez, Alfredo. Astra soa white paper.

http://www.astra-project.net, 2009.

[CM07] Calemis, Ioannis and Mavrommati, Irene. Preliminary requirements and

approach for tools that configure pervasive awareness applications: the

astra case. http://www.astra-project.net, 2007.

[Con06] Conradi, Reinard. Astra: Awareness services and systems - towards theory

and realization. http://www.idi.ntnu.no/grupper/su/astra.html, 2006.

[DC09] Pérez, Alfredo Divitini, Monica and Cassens, Jörg. Design and eval-

uation of a repository for sharing pervasive awareness applications.

http://www.astra-project.net, 2009.

[GM05] Gallego, Micael and Montalvo, Soto. Interfaces gráficas en Java. Centro

de estudios Ramón Areces, 2005.

[Hai04] Haiges, Sven. Osgi tutorial. http://www.knopflerfish.org/tutorials/, 2004.

116

BIBLIOGRAPHY 117

[Le 02] Le Hégaret, Philippe. The w3c document object model (dom). W3C, 2002.

[Lyb07] Lybarger, Rob. Mvc in a java/swing application.

http://www.developer.com/design/article.php/3678856, 2007.

[McC08] McCabe, Francis G. Reference architecture for service oriented architec-

ture. http://docs.oasis-open.org/, 2008.

[PS07] Rogers, Yvonne Preece, Jenhy and Sharp, Helen. Interaction design: be-

yond human-computer interaction (2nd edition). Wiley, 2007.

[San05] Sanjay, Addicam V. Overview of agile management and development meth-

ods. The PROJECT PERFECT White Paper Collection, 2005.

[Sun08] Sun Microsystems. Java tutorials: Concurrency in swing.

http://java.sun.com/docs/books/tutorial/uiswing/concurrency/, 2008.

	Introduction
	What is ASTRA?
	ASTRA applications
	Motivations of the project

	Objectives
	Methodology and involved technologies
	Methodology
	Involved paradigms and technologies
	SOA
	Java
	OSGi
	Swing
	XML
	DOM
	Lucene
	MySQL

	Description
	Requirements
	Use cases
	Repository management
	Searching
	Tags management
	Other general functionalities

	Design
	Bundles design
	RepositoryManager
	TagManagerBackEnd
	TagManagerNode
	ApplicationManager

	Implementation
	Creating and deploying a bundle
	Implementing MVC in a SWING application
	Search engine development
	Application adaptation

	User interaction
	Tagging and sharing
	Locating an application in the repository
	Retrieving and adapting an application from the repository

	Testing
	Functionalities verification
	OS compatibility
	Search engine testing
	Users evaluation

	Coordination
	Tools

	Conclusions
	Achieved goals
	Contribution
	Future work
	Personal evaluation

	Document scoring in Lucene
	Search engine - Testing data
	Bundles manifests
	RepositoryManager's manifest
	TagManagerBackEnd's manifest
	TagManagerNode's manifest
	ApplicationManager's manifest

	OSGi bundles configuration
	OSGi - Backend configuration
	OSGi - Node configuration

	GNU Free Documentation License
	1. APPLICABILITY AND DEFINITIONS
	2. VERBATIM COPYING
	3. COPYING IN QUANTITY
	4. MODIFICATIONS
	5. COMBINING DOCUMENTS
	6. COLLECTIONS OF DOCUMENTS
	7. AGGREGATION WITH INDEPENDENT WORKS
	8. TRANSLATION
	9. TERMINATION
	10. FUTURE REVISIONS OF THIS LICENSE
	11. RELICENSING

